

Mobile Computing

Unit - I

What is computing?

The utilization of computers to complete a task. It involves both hardware & software functions
performing some sort of task with a computer.

Examples of computing being used in everyday life: Swiping a debit card, sending an email, or
using a cell phone can all be considered forms of computing.

What is the mobility?

The capability to change location while communicating to invoke computing service at some

remote computers.

What is mobile computing?

Ability to compute remotely while on the move. It is possible to access information from

anywhere and at anytime.

Definition: What is mobile computing?

 Computing that is not obstructed while the location of it changes.

 Mobile Computing is using a computer (of one kind or another) while on the move.

 Computing on the go!!

 Mobile Computing is a technology that allows transmission of data, voice and video via
a computer or any other wireless enabled device without having to be connected to a
fixed physical link.

 The process of computation on a mobile device.

 Facilitates a large number of applications on a single device.

The Mobile Computing Structure:

1. Mobile communication

2. Mobile hardware

3. Mobile software

Mobile communication

The mobile communication in this case, refers to the

infrastructure put in place to ensure that seamless and reliable

communication goes on. These would include devices such as

protocols, services, bandwidth, and portals necessary to

facilitate and support the stated services. The data format is

also defined at this stage. This ensures that there is no collision

with other existing systems which offer the same service.

Since the media is unguided / unbounded, the overlaying infrastructure is basically radio

wave-oriented. That is, the signals are carried over the air to intended devices that are capable

of receiving and sending similar kinds of signals.

Mobile Hardware

Mobile hardware includes mobile devices or device

components that receive or access the service of mobility.

They would range from portable laptops, smartphones, tablet

Pc's, Personal Digital Assistants.

These devices will have a receptor medium that is capable of

sensing and receiving signals. These devices are configured to operate in full- duplex, whereby

they are capable of sending and receiving signals at the same time. They don't have to wait until

one device has finished communicating for the other device to initiate communications.

Above mentioned devices use an existing and established network to operate on. In most cases,

it would be a wireless network.

Mobile software

Mobile software is the actual program that runs on the mobile hardware. It deals with the

characteristics and requirements of mobile applications. This is the engine of the mobile device.

In other terms, it is the operating system of the appliance. It's the essential component that

operates the mobile device.

Since portability is the main factor, this type of computing ensures that users are not tied or

pinned to a single physical location, but are able to operate from anywhere. It incorporates all

aspects of wireless communications.

Symbian: Symbian is a very popular platform but for only one reason, cheapest smart phone

OS out there. it is good, all other platforms are better, and even more importantly will get even

better over time, Symbian is finally starting to lose ground.

Windows Phone: it is better for business solutions, windows phone is more a end consumer

product, oriented to the social networking and online boom.

Blackberry: Great at keeping your data safe, while not as good as iOS or Android as a platform

it offers many things that no other hardware does.

Android: The API is easy to use with basically infinite tools, its as flexible as iOS without all the

crazy restrictions

 A software platform and operating system for mobile devices

 Based on the Linux kernel and Virus Free

 Android Open Source Project

 Developed by Google and later the Open Handset Alliance

 Allows writing managed code in the Java language

Brief about Mobile Computing OS

A mobile operating system, also known as a mobile OS, a mobile platform, or a handheld

operating system, is the operating system that controls a mobile device or information

appliance—similar in principle to an operating system.

Such as Windows, Mac OS, or Linux that controls a desktop computer or laptop.

However, they are currently somewhat simpler, and deal more with the wireless versions of

broadband and local connectivity, mobile multimedia formats, and different input methods.

Typical examples of devices running a mobile operating system are smart phones, personal

digital assistants (PDAs), and information appliances, or what are sometimes referred to as

smart devices, which may also include embedded systems, or other mobile devices and wireless

devices.

Symbian OS

Symbian OS has become a standard operating system for smartphones, and is licensed by more

than 85 percent of the world's handset manufacturers. The Symbian OS is designed for the

specific requirements of 2.5G and 3G mobile phones.

Windows Mobile

The Windows Mobile platform is available on a variety of devices from a variety of wireless

operators. You will find Windows Mobile software on Dell, HP, Motorola, Palm and i-mate

products. Windows Mobile powered devices are available on GSM or CDMA networks.

Palm OS or Personal Digital Assistant (PDA) - Sometimes called pocket computers

Since the introduction of the first Palm Pilot in 1996, the Palm OS platform has provided mobile

devices with essential business tools, as well as capability to access the Internet or a central

corporate database via a wireless connection.

Mobile Linux:

The first company to launch phones with Linux as its OS was Motorola in 2003. Linux is seen as

a suitable option for higher-end phones with powerful processors and larger amounts of

memory.

MXI (Motion experience Interface)

MXI is a universal mobile operating system that allows existing full-fledged desktop and mobile

applications written for Windows, Linux, Java, and Palm are enabled immediately on mobile

devices without any redevelopment.

MXI allows for interoperability between various platforms, networks, software and hardware

components.

No Touchscreen interface instead uses Stylus.

Android OS

Android is a mobile operating system (OS) based on the Linux kernel and currently developed

by Google.

With a user interface based on direct manipulation, Android is designed primarily for

touchscreen mobile devices such as smartphones and tablet computers, with specialized user

interfaces for televisions (Android TV), cars (Android Auto), and wrist watches (Android

Wear).

The OS uses touch inputs that loosely correspond to real-world actions, like swiping, tapping,

pinching and reverse pinching to manipulate on-screen objects, and a virtual keyboard.

iOS

iOS (originally iPhone OS) is a mobile operating system created and developed by Apple Inc.

and distributed exclusively for Apple hardware.

It is the operating system that presently powers many of the company's mobile devices,

including the iPhone, iPad, and iPod touch.

There are two Main Aspects of mobile computing:

User mobility: users communicate “anytime, anywhere, with anyone” (example: read/write

email on web browser)

 Between different geographical locations
 Between different networks
 Between different communication devices
 Between different applications

Device portability: devices can be connected anytime, anywhere to the network

 Between different geographical locations
 Between different networks

User mobility refers to a user who has access to the same or similar telecommunication services

at different places, i.e., the user can be mobile, and the services will follow him or her.

With device portability, the communication device moves

• Many mechanisms in the network and inside the device have to make sure that

communication is still possible while the device is moving.

Aspects of mobility

We can define a computing environment as mobile if it supports one or more of the following

characteristics:

User Mobility

User should be able to move from one physical location to another location and use the same
service.

For Example, User moves from London to New York and uses the Internet in either place to
access the corporate application.

Network Mobility

User should be able to move from one network to another network and use the same service.

For Example, User moves from Bangalore to Chennai and uses the same GSM phone to access
the corporate application.

Bearer Mobility

User should be able to move from one bearer to another while using the same service.
For Example, User is unable to access the WAP bearer due to some problem in the GSM
network then he should be able to use voice or SMS bearer to access that same corporate
application.

Device Mobility

User should be able to move from one device to another and use the same service.

For Example, User is using a PC to do his work. During the day, while he is on the street he
would like to use his Palmtop to access the corporate application.

Session Mobility

A user session should be able to move from one user- agent environment to another.

For Example, An unfinished session moving from a mobile device to a desktop computer is a
good example.

Service Mobility

User should be able to move from one service to another.

For Example, User is writing a mail. Suddenly, he needs to refer to something else. In a PC, user
simply opens another service and moves between them. User should be able to do the same in
small footprint wireless devices.

Host Mobility

User should be able to move while the device is a host computer.

For Example, The laptop computer of a user is a host for grid computing network. It is
connected to a LAN port. Suddenly, the user realizes that he needs to leave for an offsite
meeting.

He disconnects from the LAN and should get connected to wireless LAN while his laptop being

the host for grid computing network.

Types of Computing:

Mobile Computing: This computing environment moves along with the user. This is similar to

the telephone number of a GSM (Global System for Mobile communication) phone, which

moves with the phone. The offline (local) and real-time (remote) computing environment will

move with the user. In real-time mode the user will be able to use all his remote data and

services online.

• Anywhere, Anytime Information: This is the generic definition of ubiquity, where the information is
available anywhere, all the time.
• Virtual home Environment: Virtual Home Environment (VHE) is defined as an environment in a
foreign network such that the mobile users can experience the same computing experience as they have
in their home or corporate computing environment. For example, one would like to keep the room heater
on when one has stepped outside for about 15 minutes.

Nomadic (நாட ாடி) Computing: The computing environment is nomadic and moves along with the
mobile user. This is true for both local and remote services.

Pervasive Computing: A computing environment, which is pervasive in nature and can be made
available in any environment.

Ubiquitous (எங்கும்) Computing: A (nobody will notice its presence) everyplace computing
environment. The user will be able to use both local and remote services.
Global Service Portability: Making a service portable and available in every environment. Any service of
any environment will be available globally.
Wearable Computers: Wearable computers can be worn by humans like a hat, shoe or clothes (these are
wearable accessories). Wearable computers need to have some additional attributes compared to
standard mobile devices. Wearable computers are always on; operational while on the move; hands-free,
context-aware (with different types of sensors). Wearable computers need to be equipped with proactive
attention and notifications. The ultimate wearable computers will have sensors implanted in the body
and supposedly integrate with the human nervous system. These are part of a new discipline of research
categorized by “Cyborg” (Cyber Organism).

The following are the four different characteristics exhibit by the communication devices.

1) Fixed and wired: This category describes the fixed desktop computers in the office, which are connected

through the wired network. The weight and power consumption of these devices does not permit for

mobility, these devices use fixed network for information accessing

2) Mobile and wired: The most of the portable computing devices fall within this category. We can easily

carry these devices (ex: laptops) from one place to another place and reconnecting to the organization’s

network via the telephone lines or a modem.

3) Fixed and wireless: This kind of technique is especially used for installing networks in historical places

such as buildings to avoid damages by fixing cables and other equipment. This method can also be used

for fastest network setup.

4) Mobile and wireless: This is the most recent technique, in which no cable restricts, the user, who can

roam between different wireless networks. Ex: GSM –Global system for mobile communications.

Specific absorption rate (SAR) is a measure of the rate at which energy is

absorbed by the human body when exposed to a radio frequency (RF)

electromagnetic field. It can also refer to absorption of other forms of

energy by tissue, including ultrasound.

Virtual home environment (VHE) refers to a network-supported mobile

computing environment that allows a user to access the same computing

environment on the road as they would have at home or their place of

business.

Mobile Computing - Major Advantages

Location Flexibility

This has enabled users to work from anywhere as long as there is a connection established. A user

can work without being in a fixed position. Their mobility ensures that they are able to carry out

numerous tasks at the same time and perform their stated jobs.

Saves Time

The time consumed or wasted while travelling from different locations or to the office and back,

has been slashed. One can now access all the important documents and files over a secure channel

or portal and work as if they were on their computer. It has enhanced telecommuting in many

companies. It has also reduced unnecessary incurred expenses.

Enhanced Productivity

Users can work efficiently and effectively from whichever location they find comfortable. This

in turn enhances their productivity level.

Ease of Research

Research has been made easier, since users earlier were required to go to the field and search for

facts and feed them back into the system. It has also made it easier for field officers and

researchers to collect and feed data from wherever they are without making unnecessary trips to

and from the office to the field.

Entertainment

Video and audio recordings can now be streamed on-the-go using mobile computing. It's easy to

access a wide variety of movies, educational and informative material. With the improvement

and availability of high speed data connections at considerable cost, one is able to get all the

entertainment they want as they browse the internet for streamed data. One is able to watch news,

movies, and documentaries among other entertainment offers over the internet. This was not

possible before mobile computing dawned on the computing world.

Streamlining of Business Processes

Business processes are now easily available through secured connections. Looking into security

issues, adequate measures have been put in place to ensure authentication and authorization of

the user accessing the services.

Some business functions can be run over secure links and sharing of information between

business partners can also take place.

Meetings, seminars and other informative services can be conducted using video and voice

conferencing. Travel time and expenditure is also considerably reduced.

Applications of Mobile Computing

1. Vehicles:

 Transmission of news, road condition, weather, music via DAB
 Personal communication using GSM
 Position via GPS
 Local ad-hoc network with vehicles close-by to prevent accidents, guidance

system, redundancy
 Vehicle data (e.g., from busses, high-speed trains) can be transmitted in advance

for maintenance

2. Emergencies: • early transmission of patient data to the hospital, current status, first
diagnosis • replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc. •
Wireless networks are the only means of communication in the case of natural disasters such as
earthquakes. •

3. Business: • A travelling salesman today needs instant access to the company’s database: to
ensure that files on his or her laptop reflect the current situation, to enable the company to keep
track of all activities of their travelling employees, to keep databases consistent etc.

4. Replacement of wired networks • wireless networks can also be used to replace wired
networks, • it is often impossible to wire remote sensors for weather forecasts, earthquake
detection, or to provide environmental information. • Wireless connections, e.g., via satellite,
can help in this situation. • Wired network is infrequent and inflexible • Many computer fairs
use WLANs as a replacement for cabling. • wireless networks are computers, sensors, or
information displays • in historical buildings, where excess cabling may destroy valuable walls
or floors.

• 5. Infotainment and more • wireless networks can provide up-to-date information at any
appropriate location. • Another growing field of wireless network applications lies in
entertainment and games to enable, e.g., ad-hoc gaming networks as soon as people meet to
play together.

6. Location dependent services • Many research efforts in mobile computing and wireless
networks try to hide • the fact that the network access has been changed • it is important for an
application to ‘know’ something about the location or the user might need location information
for further activities. Several services that might depend on the actual location can be
distinguished: • Follow-on services – automatic call-forwarding, transmission of the actual
workspace to the current location • Information services – „push“: e.g., current special offers in
the supermarket – „pull“: e.g., where is the Black Forrest Cherry Cake? • Support services –
caches, intermediate results, state information etc. „follow“ the mobile device through the fixed
network • Privacy – who should gain knowledge about the location

Limitations of Mobile Computing:

1. Resource constraints - Battery needs and recharge requirements are the biggest constraints of mobile
 computing. When a power outlet or portable generator is not available, mobile computers must rely
 entirely on battery power. Combined with the compact size of many mobile devices, this often means
 unusually expensive batteries must be used to obtain the necessary battery life.

2. Interference - There may be interference in wireless signals affecting the quality of service. Weather,
 terrain, and the range from the nearest signal point can all interfere with signal reception. Reception in
 tunnels, some buildings, and rural areas is often poor.

3. Bandwidth — There may be bandwidth constraints due to limited spectrum availability at given
 instant causing connection latency. Mobile Internet access is generally slower than direct cable
 connections, using technologies such as GPRS and EDGE, and more recently 3G networks. These
 networks are usually available within range of commercial cell phone towers. Higher speed wireless
 LANs are inexpensive but have very limited range.

4. Dynamic changes in communication environment - We know that there may be variations in signal
 power within a region it causes link delays and connection loss.

5. Network issues — Due to the ad hoc networks some issues relating discovery of connection, service to
 destination, and connection stability.

6. Interoperability (இயங்குதன்மை—The varying protocol standards available between different
 regions may lead to interoperability issues.

7. Security constraints - Protocols conserving privacy of communication may be violated. Sometimes
 physical damage or loss of mobile device is probable than static computing system.

8. Potential health hazards: People who use mobile devices while driving are often distracted from
 driving are thus assumed more likely to be involved in traffic accidents. Cell phones may interfere with
 sensitive medical devices. There are allegations that cell phone signals may cause health problems.

9. Human interface with device: Screens and keyboards tend to be small, which may make them hard to
 use. Alternate input methods such as speech or handwriting recognition require training.

Advantages of Mobile Computing:

1. No location constraint: Mobile computing frees the user from being tied to a location and increased
bandwidth and speed of transmission makes it possible to work on the move.

2. It saves time and enhances productivity with a better return on investment (RoI)
3. It provides entertainment, news and information on the move with streaming data, video and

audio Streamlining of business processes: Mobility has enabled streamlining of business processes,
cumbersome emails, paper processing, delays in communication and transmission.

4. Newer job opportunities for IT professionals have emerged and IT businesses now have an added
service in their portfolio which only will keep growing as per indicative mobile computing trends.

Android Emulator is used to run, debug and test the android application. If

you don't have the real device, it can be the best way to run, debug and

test the application.

Mobile Application Testing

One thing is self-explanatory in case of mobile testing. To perform mobile testing, you need a
mobile device. This is to access that how our product will work and look like on a given mobile
set.

Suppose we are developing an application for flight ticket booking system. Once the product is
entirely developed, as a part of mobile testing, we need to check if the application is working as
expected with all the majorly used devices like Android phones, iOS, Blackberry phones, and
other different types of tablets and iPads.

To do this kind of check, we need to acquire each such device and then we can check if the
application behaves as per expectation. Yes you thought right, as a product owner one will
defiantly find this very expensive to procure such a large number of mobile devices and carry out
testing. So is there any smart alternate available?

The solution to this problem is to use Mobile Simulators and Mobile Emulators. These are
primarily software programs designed to provide simulation for important features of a
smartphone. They are very similar in nature, so sometimes, they are used interchangeably.

Real Device Emulator / Simulator

Price Getting real devices will cost
you a lot.

It is almost free, we just need to
download and install them

Processing Speed It has faster processing;
however network latency may
be normal.

It is slower as compared to actual
devices. It has observed less latency
than real devices connected to the
local network or in the cloud.

Debugging Debugging is not that easy. It provides step-by-step debugging
of an application. Also, it provides
an efficient way for capturing
screenshots.

Web-app Testing Web applications can be tested
in a normal way.

Testing a web application is much
easier.

Reliability Testing on a real device has a
major advantage that it always
gives accurate results.

It cannot simulate all types of user
interactions; hence it may lead to
false results sometimes. So it scores
low when it comes to reliability.

An emulator can replace the original for 'real' use. A simulator is a model for analysis.

A simulator is an environment which models but an emulator is one that replicates the usage
as on the original device or system.

Available Tools for Mobile UI Testing

There are quite a few tools available in the market to make mobile UI testing smoother and
simpler. For example −

 Google chrome extension
 Screenfly
 Browser Stack

Screenfly

Screenfly is a free and easy-to-use tool. To use this, you just need to type in Quirktools in your

web browser. You will see the following screen.

Enter the website under test and click Go. Select the mobile device in which you want to view

the website.

There are many Android testing frameworks available in the market. Let’s take a look at the top
5 on the stack.

 Robotium − Robotium is an open-source test framework for developing functional,
system and acceptance test scenarios. It is very similar to Selenium.

 UIAutomator − UIAutomator is a test framework by Google that provides advance UI
testing of native Android apps and games. It has a Java library containing API to create
functional UI tests and also an execution engine to run the tests.

 Appium − Appium is an open-source test automation framework to test native and
hybrid apps and mobile web apps. Appium library functions inside the framework
make calls to the Appium server running in the background which operates the
connected device.

 Calabash − Calabash is a functional testing framework that can be used for both iOS and
Android functional testing. On paper, it must be one of the easiest frameworks to use
and even non-developers should be able to create functional tests using it.

 Selendroid − Selendroid is a relatively new kid on the block and can be used to
functionally test your Android applications. Apparently, if you are used to Selenium,
Selendroid should be an easy way to use your knowledge to create your functional tests
for Android.

Like Android testing frameworks, there are many iOS testing frameworks available in the
market. Here we will talk about a few popular ones.

 Appium − Appium is an open-source test automation framework to test native and
hybrid apps and mobile web apps. Appium library functions inside the framework
make calls to the Appium server running in background which operates the connected
device.

 Calabash − Calabash is a functional testing framework that can be used for both iOS and
Android functional testing. On paper, it must be one of the easiest frameworks to use
and even non-developers should be able to create functional tests using it.

 Zucchini − Zucchini is an open-source visual functional testing framework for iOS
applications based on Apple UIAutomation.

 UI Automation − For your more typical functional tests (or black-box tests), in which
you’re going to write code that simulates an end-user navigating your app, there is UI
Automation. UI Automation is provided by Apple and is the Apple-sanctioned way of
performing iOS functional testing.

 FRANK – BDD for iOS − If you want to do end-to-end testing in iOS and wish you
could use BDD and Cucumber, no worries — there’s a tool called Frank that will allow
you to create acceptance tests and requirements using Cucumber.

Mobile applications

 Mobile applications (also known as mobile apps) are software programs developed for mobile
devices such as smartphones and tablets.

 Compact software programs that performs specific tasks for the mobile user.
 A Software application that runs in a handheld device such as a Smartphone or other portable device.

Compared to desktop or notebook computers, mobile devices have relatively:

Low processing power

Limited RAM

Limited permanent storage capacity

Small screens with low resolution

Higher costs associated with data transfer

Slower data transfer rates with higher latency (delay)

Less reliable data connections

Limited battery life

It’s important to keep these restrictions in mind when creating new applications.

10 steps: How to Create a Successful Mobile Application?

Step 1: A great imagination leads to a great app

To create a successful mobile application, the first thing you need to keep in mind is:

 Identify a problem which can be resolved by your app

 Decide the features of your app

The app should provide customer with tangible benefits including reducing costs via

productivity enhancements, new revenue or improving the customer experience.

Step 2: Identify

To create a successful mobile app, you need to identify or be clear about:

 Application target users

An app should always be developed keeping in mind the target users of an application. Having

a clear vision regarding the target group, enhance the success ratio of an app.

 Mobile platforms and devices to be supported

Mobile platforms and devices should be selected keeping in mind hardware performance,

battery life, ruggedness and required peripherals. Certain factors that needs to be considered

while selecting mobile platforms and devices includes coverage, device support, performance

and other features.

 Revenue model

The app market is booming like never before. To ensure this resource and generate revenue,

app developer need to select appropriate approach in accordance with the app. There are

different models of generating revenue from mobile applications which include paid

applications, separate app and in-app fermiums (Business model), advertisements, subscription

and pay per download.

These techniques can be employed to generate revenue. However, the developer’s approach has

to be in accordance with the application. It is highly essential for the developer to attract the

user and spend money on the various aspects of the application.

 At this point you should also think about your finances, how much money you wish to set

aside for the development, marketing and eventual release of your app.

Step 3: Design your app

Designing your app is yet another significant factor responsible for success of an app in the

market. An app developer should concentrate on the UI design, multi-touch gestures for touch-

enabled devices and consider platform design standards as well.

Designing an app is becoming increasingly popular as it create an instant impact on the mind of

the user while ensuring usability of an app.

Step 4: Identify approach to develop the app - native, web or hybrid

Selecting the right approach for developing an app is highly important. Ideally, app

development approach must be in accordance with the time and budget constraints of a client.

 Native:

Native apps enables in delivering the best user experience but require significant time and skill

to be developed. These apps are basically platform specific and require expertise along with

knowledge. Native apps are costly as well as time taking to be developed and deliver the

highest user experience amongst all the approaches.

 Web:

Web apps are quick and cheap ones to develop and can run on multiple platforms. These are

developed using HTML5, CSS and JavaScript code. These web apps are less powerful than

native apps.

 Hybrid:

Hybrid approach is the latest approach to develop any app. This approach combines prebuilt

native containers with on-the-fly web coding in order to achieve the best of both worlds. In this

approach, the developer augments the web code with native language to create unique features

and access native APIs which are not yet available through JavaScript.

 Step 5: Develop a prototype

Next stage, after identifying the approach is developing a prototype. It is actually the process of

taking your idea and turning it into an application with some basic functionality. A prototype

makes it quite easier to sell your idea to potential buyers who can now actually view the tangible

benefits instead of just visualizing or reading product description. It is quite helpful in attracting

investors and working with manufacturers and finding licensees.

Even while working on a prototype, do ensure you take measures to secure your app against

unauthorized usage and access to data.

Step 6: Integrate an appropriate analytics tool

 There is also a need to incorporate appropriate analytics which gives you a detailed picture of

how many visitors use your webs, how they arrived on your site and how can they keep

coming back.

Some of the mobile analytics tool which helps in this process:

 Google Analytics

 Localytics

 Mixpanel

 Preemptive

With data sciences, including predictive analytics coming up in mobile apps, it can make your

apps highly marketable.

Step 7: Identify beta-testers. Listen to their feedback and integrate relevant ones

Beta testing is the first opportunity to get feedback from your target customers. It is especially

important as it enhances your visibility in the app store. It not only reduce product risk but get

you that initial push in the app store. To identify beta testers is another important task to ensure

success of an app.

Preparing for beta launch:

 Define target customer

It is highly important to identify and clearly define your target audience. This will enable you

identify the right testers during your beta tester recruiting. Early market research helps in

understanding market analysis which eases the process of beta testing.

 Eliminate bugs

Before beta testing your app on different platforms you need to take into account majority of the

devices which eliminate device specific bugs. Alpha testing with a small number of users enables

to clear out maximum bugs. At the same time, device coverage plan is significant for quality

assurance of mobile app.

 Identify goals

Beta testing is the best opportunity to get real feedback from target customers. It provides a great

opportunity to further understand target market and their requirements. Identifying goals for

beta testing helps in focusing the efforts. These goals reduce your product launch risk.

Step 8: Release / deploy the app

Deploying an app requires plan, schedule and control of the movement of releases to test and

live environments. The major objective of Deployment Management is to ensure the integrity of

the live environment is protected and that the correct components are released.

 Step 9: Capture the metrics

There has been significant rise in the mobile app users in the present decade. As a result, the need

to collect accurate metrics is highly important. As the number of consumers using mobile

applications steadily rises, the need to collect accurate metrics from them is increasingly

important. Unfortunately, many of the methods used to measure apps are taken from web

analytics.

Step 10: Upgrade your app with improvements and new features

After capturing the metrics it becomes important to upgrade your app with improvements and

innovative features. A mobile app without innovative features loses its usability in long run.

Upgrading your app with innovative features enhances its visibility along with downloads of

an app. Also ensure you keep updating your app to meet new guidelines offered by the various

platforms, don't let your apps stagnate.

Mobile App Functions

The purposes of these apps run the gamut, from utility, productivity, and navigation to entertainment,
sports, fitness, and just about any others imaginable. Social media is one of the most popular fields of
mobile app development and adoption. In fact, Facebook was the most widely used app in 2017 across all
platforms.
Many online entities have both mobile websites and mobile apps. In general, the difference lies in purpose:
An app is usually smaller in scope than a mobile website, offers more interactivity, and presents more
specific information in a format that's easy and intuitive to use on a mobile device.

Operating System Compatibility

A mobile app developer creates an app specifically for the operating system in which it will run. For
example, mobile apps for the iPad are supported by Apple's iOS, but not Google's Android. An Apple app
can't run on an Android phone, and vice versa.
Often, developers create a version for each; for example, a mobile app in the Apple Store might have a
counterpart in Google Play.

Why Mobile Apps Are Different From "Regular" Apps

Many mobile apps have corresponding programs meant to run on desktop computers. Mobile apps have
to work with different constraints than their desktop equivalents, however.

Mobile devices have a wide range of screen sizes, memory capacities, processor capabilities, graphical
interfaces, buttons, and touch functions, and developers must accommodate them all.
For example, mobile app users (like website visitors) don't want to scroll sideways to see text, images, or
interactive touchpoints, nor do they want to struggle reading tiny text. An additional consideration for
mobile app developers is the touch interface common to mobile devices.

User Interface

The mechanism through which user access a software application is referred to as the user
interface.

Nearly all “touchy-feely” considerations of user interface design fall within the purview of
human factors.

For example, a voice user interface is better suited for an application designed for finding
directions while driving than a graphical user interface because drivers cannot safely read or
view the directions while driving though they can hear the directions safely. Therefore, mobile
applications must be designed with multiple channels in mind: We will not limit ourselves to just
voice or just graphical user interfaces.

Let us take a close look at these three key aspects. We will have the most focus on the first, the
“user-friendliness” of the application in this text. This is one of the keys to what makes or breaks
any application, particularly a mobile application. An application that is difficult to use is one
that does not attract users.

For this, not only do we need to make the application easy and efficient to navigate, but we need
to consider things like color, noise, timing, esthetic quality, and a variety of other qualitative
factors that make the user “like” the look-and-feel of the application. A user interface is well
designed when the program behaves exactly how the user thought it would. So, another factor is
to think of what a typical user considers desirable. Once again, this might include a variety of
esthetics, timing, color, etc.

This shows us that there is a cognitive element involved in interacting with user interfaces that
not only is important in the greater picture of human-to-computer interface (HCI) but also is
something that affects human factors. A background color that is very bright may seem nice the
first time the device is used, but over time it may seem less and less desirable. Finally, there is the
health element.

In fact, this is one of the prime areas of focus in the study of human factors; ergonomics and
human factors are associated with things such as keyboard shape (so-called ergonomic
keyboards).

Usability, Human Factors, and Other Considerations for Developing User Interfaces:

1. Intuitiveness (உள்ளுணர்வு): User interfaces should be intuitive. The first time a user uses an
application, he or she should be able to navigate his or her way through without too much trouble,
assuming a reasonable amount of familiarity with the application domain.

2. Consistency: A software application should present user interface components that are
consistent with each other and consistent with their operating environments. For example, if one
screen refers to the gender of a user by allowing the user to select between man and woman, other
screens should not refer to gender in different terms such as male or female. Also, the user interface
should be consistent with the user’s operating environment.

3. Learnability: The user should be able to learn how to use the user interface within the first
few times of using it and remember how to use it without having to refer to manuals. This goes
hand in hand with the user interface being intuitive.

4. Non-intrusively helpful: The user interface and the underlying application should provide help
and hints. There can never be too much in the way of help and hints on a user interface. A key in
implementing hints and help is to make them so that they do not hinder efficient use of the
application. The little helper that pops up on the screen every few minutes without an explicit
invocation of the user can be annoying and cut down on the efficient use of the user interface.

5. Accommodating Expert Users: A good user interface provides shortcuts for the expert users.
Applications should be efficient and fast to use for expert users. As a user learns how to use the
system better, he or she should be able to access the information and perform the tasks faster and
faster.

6. Trustable: The user interface should be predictable, trustable, and easily understood. There
should be a simple set of rules that are used in building the user interface that allow the user to
be able to guess what the reaction of the user interface may be.

7. Robustness (வலுவான): A good user interface should gracefully recover from user errors (e.g.,
display the proper dialogue boxes to guide the user when an error happens), should convey the
relation to the application logic easily to the user (e.g., make sure that the user knows which data
are changing, when transactions are committed, etc.), and should be fast enough and let the user
know when there are long waits for responses.

Let us enumerate again the requirements on the human factor aspects of mobile application
design that are related to the condition of the user:

1. Short Transaction Cycles: Mobile users typically do not perform tasks that involve great
amounts of data entry or long transaction cycles. Mobile users typically use the devices at their
disposal to perform a few quick tasks.

2. Expectations of Consumer Devices: Mobile users have much higher expectations for consumer
devices than for PCs. For example, users cannot handle waiting for their MP3 player, PDA, or
cell phone to spend several minutes to “boot-up.” Users expect to turn a device on, wait for a
maximum of several seconds, and then begin to use the device.

3. Lack of Focus: Mobile users are not focused on the task of computing. Because the mobile user
is frequently using the mobile application while moving (driving, walking, going from place to
place, etc.), he or she has to do multiple things at the same time. This becomes a big
consideration in the human factor aspects of the user interface design.

4. Intermittent Network Connectivity: Mobile devices have unreliable connections to the network,
so the device may be disconnected from the network at any time.

5. Multichannel User Interfaces: As we will see later on in this chapter, mobile applications use a
large variety of user interfaces to communicate with the user. This gives a mobile application
more flexibility

Text-to-speech (TTS)

Text-to-speech (TTS) is a type of speech synthesis application that is used to create a
spoken sound version of the text in a computer document, such as a help file or a Web page. TTS
can enable the reading of computer display information for the visually challenged person, or
may simply be used to augment the reading of a text message. Current TTS applications include
voice-enabled e-mail and spoken prompts in voice response systems.

Speech synthesis is the artificial production of human speech. A computer system used
for this purpose is called a speech computer or speech synthesizer, and can be implemented in
software or hardware products.

A text-to-speech (TTS) system converts normal language text into speech; other systems
render symbolic linguistic representations like phonetic transcriptions into speech.

Synthesized speech can be created by concatenating pieces of recorded speech that are
stored in a database. Systems differ in the size of the stored speech units; a system that stores
phones or diaphones provides the largest output range, but may lack clarity. For specific usage
domains, the storage of entire words or sentences allows for high-quality output. Alternatively,
a synthesizer can incorporate a model of the vocal tract and other human voice characteristics to
create a completely "synthetic" voice output.

The quality of a speech synthesizer is judged by its similarity to the human voice and by its ability
to be understood clearly. An intelligible text-to-speech program allows people with visual
impairments or reading disabilities to listen to written works on a home computer. Many
computer operating systems have included speech synthesizers since the early 1990s.

A text-to-speech system (or "engine") is composed of two parts: A front-end and a back-end. The
front-end has two major tasks. First, it converts raw text containing symbols like numbers and
abbreviations into the equivalent of written-out words. This process is often called text
normalization, pre-processing, or tokenization. The front-end then assigns phonetic transcriptions to
each word, and divides and marks the text into prosodic units, like phrases, clauses, and
sentences. The process of assigning phonetic transcriptions to words is called text-to-phoneme or
grapheme-to-phoneme conversion. Phonetic transcriptions and prosody information together make
up the symbolic linguistic representation that is output by the front-end. The back-end—often
referred to as the synthesizer—then converts the symbolic linguistic representation into sound. In
certain systems, this part includes the computation of the target prosody (pitch contour, phoneme
durations), which is then imposed on the output speech.

Text-to-speech applications are those applications that change written language into spoken language.

Overview

Text-to-speech fundamentally functions as a pipeline that converts text into PCM digital audio. The

elements of the pipeline are:

 Text normalization

 Homograph disambiguation

 Word Pronunciation

 Prosody

 Concatenate wave segments

Text Normalization

JText Normalization it is that part of text-to-speech program that converts any input text into a series of

spoken words. At basic level, text normalization converts a string like "My name is Ritesh" to a series of

words, “My”, “name”, “is”, “Ritesh", along with a marker indicating that a period occurred (a comma).

However, this gets more complicated when strings like "John rode home at 23.5 mph", where "23.5

mph" is converted to "twenty three point five miles per hour". Here’s how text normalization works:

First, text normalization isolates words in the text. For the most part this is as minor as looking for a

sequence of alphabetic characters, allowing for an occasional apostrophe, space and hyphen.

Text normalization then searches for numbers, times, dates, and other symbolic representations. These

are analyzed and converted to words. (Example: "$54.32" is converted to "fifty four dollars and thirty

two cents.") Someone needs to code up the rules for the conversion of these symbols into words, since

they differ depending upon the language and context.

Next, abbreviations are converted, such as "in." for "inches", and "St." for "street" or "saint". The

normalizer will use a database of abbreviations and what they are expanded to. Some of the expansions

depend upon the context of surrounding words, like "St. John" and "John St.”

The text normalizer might perform other text transformations such as internet addresses.

"http://www.Microsoft.com" is usually spoken as "w w w dot Microsoft dot com".

Whatever remains is punctuation. The normalizer will have rules dictating if the punctuation causes a

word to be spoken or if it is silent. (Example: Periods at the end of sentences are not spoken, but a

period in an Internet address is spoken as "dot.")

The rules will vary in complexity depending upon the engine.

Homograph Disambiguation

So by reading till here you were wondering that all of the main task has happened but dude there are

other things also whose care must be take otherwise your text to speech won’t work efficiently. This

stage mainly deals with pronunciation of words.

Actually it’s not a stage by itself, but is combined into the text normalization or pronunciation

components. I’ve separated homograph disambiguation out since it doesn’t fit cleanly into either.

In English and many other languages, there are hundreds of words that have the same text, but different

pronunciations. A common example in English is "read," which can be pronounced "reed" or "red"

depending upon its meaning. A "homograph" is a word with the same text as another word, but with a

different pronunciation. The concept extends beyond just words, and into abbreviations and numbers.

"Ft." has different pronunciations in "Ft. Wayne" and "100 ft.". Likewise, the digits "1997" might be

spoken as "nineteen ninety seven" if the author is talking about the year, or "one thousand nine

hundred and ninety seven" if the author is talking about the number of people at a concert.

So the above procedure is quite tough how a computer could know that when to pronounce “read” as

“reed” or as “red”. One way is by judging what out what the text is actually talking about and decides

which meaning is most appropriate given the context. Once the right meaning is know, it’s usually easy

to guess the right pronunciation.

Text-to-speech engines figure out the meaning of the text, and more specifically of the sentence, by

parsing the sentence and figuring out the part-of-speech for the individual word (see how complicated it

is, do you remember how many part of speech are there?). This is done by guessing the part-of-speech

based on the word endings, or by looking the word up in a lexicon. Sometimes a part of speech will be

ambiguous until more context is known, such as for "read." Of course, disambiguation of the part-of-

speech may require hand-written rules.

Once the homographs have been disambiguated, the words are sent to the next stage to be

pronounced.

Word Pronunciation

The pronunciation module accepts the text, and outputs a sequence of phonemes, just like you see in a

dictionary.

To get the pronunciation of a word, the text-to-speech engine first looks the word up in its own

pronunciation lexicon. If the word is not in the lexicon then the engine reverts to "letter to sound" rules.

Now what is Letter-to-sound rules, it guess the pronunciation of a word from the text. They’re kind of

the inverse of the spelling rules you were taught in school. There are a number of techniques for

guessing the pronunciation, but the algorithm described here is one of the more easily implemented

ones.

The letter-to-sound rules are "trained" on a lexicon of hand-entered pronunciations. The lexicon stores

the word and it’s pronunciation, such as:

hello h eh l oe

An algorithm is used to segment the word and figure out which letter "produces" which sound. You can

clearly see that "h" in "hello" produces the "h" phoneme, the "e" produces the "eh" phoneme, the first

"l" produces the "l" phoneme, the second "l" nothing, and "o" produces the "oe" phoneme. Of course, in

other words the individual letters produce different phonemes. The "e" in "he" will produce the "ee"

phoneme.

Once the words are segmented by phoneme, another algorithm determines which letter or sequence of

letters is likely to produce which phonemes. The first pass figures out the most likely phoneme

generated by each letter. "H" almost always generates the "h" sound, while "o" almost always generates

the "ow" sound. A secondary list is generated, showing exceptions to the previous rule given the context

of the surrounding letters. Hence, an exception rule might specify that an "o" occurring at the end of the

word and preceded by an "l" produces an "oe" sound. The list of exceptions can be extended to include

even more surrounding characters.

When the letter-to-sound rules are asked to produce the pronunciation of a word they do the inverse of

the training model. To pronounce "hello", the letter-to-sound rules first try to figure out the sound of

the "h" phoneme. It looks through the exception table for an "h" beginning the word followed by "e";

Since it can’t find one it uses the default sound for "h", which is "h". Next, it looks in the exceptions for

how an "e" surrounded by "h" and "l" is pronounced, finding "eh". The rest of the characters are

handled in the same way.

This technique can pronounce any word, even if it wasn’t in the training set, and does a very reasonable

guess of the pronunciation, sometimes better than humans. It doesn’t work too well for names because

most names are not of English origin, and use different pronunciation rules. (Example: "Mejia" is

pronounced as "meh-jee-uh" by anyone that doesn’t know it is Spanish.) Some letter-to-sound rules first

guess what language the word came from, and then use different sets of rules to pronounce each

different language.

Word pronunciation is further complicated by people’s laziness. People will change the pronunciation of

a word based upon what words precede or follow it, just to make the word easier to speak. An obvious

example is the way "the" can be pronounced as "thee" or "thuh". Other effects including the dropping

or changing of phonemes. A commonly used phrase such as "What you doing?" sounds like "Wacha

doin?"

Once the pronunciations have been generated, these are passed onto the prosody stage.

Prosody

Now you will be thinking its all over but “kahani abhi baki hai dost” Now since you are able to pronounce

the word but by merely pronouncing the word is not sufficient you need to speak in a tone, in a speed

and other factors are also involved in a speech. This section will deals with all these factors.

Prosody is the pitch, speed, and volume that syllables, words, phrases, and sentences are spoken with.

Without prosody text-to-speech sounds very robotic, and with bad prosody text-to-speech sounds like

it’s drunk.

The technique that engines use to synthesize prosody varies, but there are some general techniques.

First, the engine identifies the beginning and ending of sentences. In English, the pitch will tend to fall

near the end of a statement, and rise for a question. Likewise, volume and speaking speed ramp up

when the text-to-speech first starts talking, and fall off on the last word when it stops. Pauses are placed

between sentences.

Engines also identify phrase boundaries, such as noun phrases and verb phrases. These will have similar

characteristics to sentences, but will be less pronounced. The engine can determine the phrase

boundaries by using the part-of-speech information generated during the homograph disambiguation.

Pauses are placed between phrases or where commas occur.

Algorithms then try to determine which words in the sentence are important to the meaning, and these

are emphasized. Emphasized words are louder, longer, and will have more pitch variation. Words that

are unimportant, such as those used to make the sentence grammatically correct, are de-emphasized. In

a sentence such as "John and Bill walked to the store", the emphasis pattern might be "JOHN and BILL

walked to the STORE." The more the text-to-speech engine "understands" what’s being spoken, the

better it’s emphasis will be.

Next, the prosody within a word is determined. Usually the pitch and volume rise on stressed syllables.

All of the pitch, timing, and volume information from the sentence level, phrase level, and word level

are combined together to produce the final output. The output from the prosody module is just a list of

phonemes with the pitch, duration, and volume for each phoneme.

Play Audio

The speech synthesis is almost done by this point. All the text-to-speech engine has to do is convert the

list of phonemes and their duration, pitch, and volume, into digital audio.

Methods for generating the digital audio will vary, but many text-to-speech engines generate the audio

by concatenating short recordings of phonemes. The recordings come from a real person. In a simplistic

form, the engine receives the phoneme to speak, loads the digital audio from a database, does some

pitch, time, and volume changes, and sends it out to the sound card.

It isn’t quite that simple for a number of reasons.

Most noticeable is that one recording of a phoneme won’t have the same volume, pitch, and sound

quality at the end, as the beginning of the next phoneme. This causes a noticeable glitch in the audio. An

engine can reduce the glitch by blending the edges of the two segments together so at their

intersections they both have the same pitch and volume. Blending the sound quality, which is

determined by the harmonics generated by the voice, is more difficult, and can be solved by the next

step.

The sound that a person makes when he/she speaks a phoneme, changes depending upon the

surrounding phonemes. If you record "cat" in sound recorder, and then reverse it, the reversed audio

doesn’t sound like "tak", which has the reversed phonemes of cat. Rather than using one recording per

phoneme (about 50), the text-to-speech engine maintains thousands of recordings (usually 1000-5000).

Ideally it would have all possible phoneme context combinations recorded, 50 * 50 * 50 = 125,000, but

this would be too many. Since many of these combinations sound similar, one recording is used to

represent the phoneme within several different contexts.

Even a database of 1000 phoneme recordings is too large, so the digital audio is compressed into a much

smaller size, usually between 8:1 and 32:1 compression. The more compressed the digital audio, the

more muted the voice sounds.

Once the digital audio segments have been concatenated they’re sent off to the sound card, making the

computer talk.

Generating a Voice

You might be wondering, "How do you get thousands of recordings of phonemes?"

The first step is to select a voice talent. The voice talent then spends several hours in a recording studio

reading a wide variety of text. The text is designed so that as many phonemes sequence combinations

are recorded as possible. You at least want them to read enough text so there are several occurrences of

each of the 1000 to 5000 recording slots.

After the recording session is finished, the recordings are sent to a speech recognizer which then

determines where the phonemes begin and end. Since the tools also know the surrounding phonemes,

it’s easy to pull out the right recordings from the speech. The only trick is to figure out which recording

sounds best. Usually an algorithm makes a guess, but someone must listening to the phoneme

recordings just to make sure they’re good.

The selected phoneme recordings are compressed and stored away in the database. The result is a new

voice.

Speech-Synthesis Languages and Tools

SSML (Speech Synthesis Markup Language)

SSML is designed with the following basic principles in mind:

1. SSML is an XML-based language. Not only is this valuable in terms of providing a standard
textual parsing mechanism.

2. Text normalization is provided. Text normalization is the ability to tell the system to pronounce
40# as “forty pounds” and not “forty number sign”.

3. SSML supports pronunciation specification using phonemes. Phonemes are those strange-looking
characters used in the dictionary to show how something is pronounced.

4. It has the ability to specify some of the qualities of speech. The SSML specification refers to the ability
of changing the pitch, timing, speaking rate, and a variety of other features that make machine-
generated pronunciations more humanlike, such as prosody.

5. It has the ability to integrate audio into the generated output. Many platforms have special
functionality in producing more humanlike speech. SSML provides a hook for such functionality
so that if some of the audio is produced by functionality outside of SSML it can be integrated.

6. It can apply styling in a modular manner. With Web-based GUIs, we have the ability to apply

CSS to modularize the formatting and look-and-feel. One of the considerations in design of

SSML was the ability to apply ACSS (which we will look at in the next section) to modularize

the “sound-and-feel” of the speech being generated by the speech-synthesis system. An

example may be generating speech with a British accent for users of a given system in England

as opposed to generating speech with an American accent for users of a given system in the

United States.

Unit – II & IV

Android:

Android is an operating system which is based on the Linux kernel. Android system is

also called as Android Open Source Project (AOSP), led by Google. Android is used for

mobile devices, such as smart phones and tablet computers. The Android application

makes life more comfortable and advanced for the users.

Features of Android:

1) Application Framework: It enabling reuse and replacement of components.
2) Dalvik virtual Machine: It is optimized for mobile devices
3) Integrated browser: It is based on open source Web Kit engine
4) Optimized Graphics: Powered by a custom 2D graphics Library, 3D graphics based on

the OpenGL ES (Open Graphics Library for Embedded System).
5) SQ Lite: Used for structured data storage
6) Media Support: Used for common audio, video, and still image formats (MPEG4, H.

264, MP3, AAC,AMR, JPG, PNG, GIF)
7) GSM Telephony, Bluetooth, EDGE, 3G, and WIFI, Camera, GPS, compass, and

accelerometer: All are hardware dependent. So its feature changes according to the
hardware.

8) Rich Development Environment: Including a device emulator, tools for debugging,
memory and performance profiling, and a plug-in for the Eclipse IDE

The diagram shows some features of Android:

 Android is a powerful, open source, Linux – based
operating system.
 It provides a rich development environment for building
the applications.
 Android has a higher success ratio, because it reduces the
development cost.
 Android has a large developer community which
integrates the internal application.
 It has reached the top of the smart phone market segment
and day by day its user base is growing strong.
 Android supports audio, video formats like JPEG, PNG,
GIF, BMP, MP3, MP4, MIDI, AMR, AMR-WB, MPEG-4 etc.

Advantages of Android

 Android is largely supported by Google allowing you to use various services of Google.
 Android is an open source and runs on mobile devices, tablets etc.
 It is multitasking that means you can run many applications at the same time. For

example, you can browse Facebook while listening the song.

 The Android operating system is available on mobile phones from various
manufacturers like Samsung, Motorola, HTC, Sony Ericsson etc.

 Using Android phone, you can easily check e-mail from Gmail if your Gmail account is
integrated with Google Services.

 User can easily access a variety of settings quickly and easily.

Disadvantages of Android

 Android requires continuous Internet connection if you are using Google services.
 Android shows error & forces to close the large apps/games, which is very annoying.
 It takes large amount of mobile data if a large number of background processes are

running.
 It increases the usage of RAM and decreases battery performance when many processes

are running in the background.

Android Application Components

Following are the Android Application Components:

1. Activity

2. Services

3. Content Providers

4. Broadcast Receivers

1. Activity

 Activity is also known as Widgets.

 Activity represents a single screen with a user interface.

 It is an individual user interface screen in an Android Application where visual

elements called Views.

 It interacts with the user to do only one thing, such as unlock screen, dial a phone,

etc.

 If new activity starts, then previous activity is stopped, but the data is preserved.

 An application consists of multiple activities.

 For example, an email application has one activity to display a list of new emails,

another activity is to compose email, reading email and so on.

2. Services

 Services performs the action without user interaction in the background, but does

not get initiated without user invocation.

 It does not require a user interface.

 It is an android application component which runs in a background and has no

visual UI.

 It is used to perform the processing part of your application in the background.

 For example, music player application. When the music station is playing the song, the

user can open another application and the song plays in the background.

3. Content Providers

 Content providers are the android application component that provide a flexible

way to make data available across applications.

 It manages common data based on permissions.

 It manages the data which is being shared by more than one application.

4. Broadcast Receivers

 Broadcast receivers are used to receive messages which are broadcast by the

Android applications.

 They respond to broadcast messages from other applications.

For example, the warning where the battery is getting low, change of time zone, etc.

 Android Architecture

Android architecture is a stack of software components. It is in the form of a

software application, operating system, run-time environment, middleware, native

libraries and services. Each part of the stack and the elements within each layer are

integrated and provide optimal application development and execution environment for

mobile devices.

It is categorized into five parts as below:

1. Linux Kernel

2. Native Libraries

3. Android Runtime

4. Application Framework

5. Applications

 What is a widget?

In Android, the word widget is a generic term for a bit of self-contained code that displays a program, or a

piece of a program, that is also (usually) a shortcut to a larger application. We see them every day on web

pages, on our computer desktop and on our smartphones, but we never give too much thought into how

great they are. Widgets first appeared in Android in version 1.5.

1. Linux Kernel

 Linux is the heart of Android architecture.

 It provides a level of abstraction between the hardware devices and the upper

layers of the Android software stack.

 The Android operating system is based on the Linux kernel.

 The Linux kernel is responsible for various device drivers such as Camera driver,

Display driver, Bluetooth driver, Keypad driver, Memory management, Process

management, Power management, etc.

2. Native Libraries

 The native libraries such as Media, WebKit, SQLite, OpenGL, FreeType,
C Runtime library (libc) etc. are situated on the top of a Linux kernel.

 Media library is responsible for playing and recording audio and video formats,
FreeType is for font support, WebKit is for browser support, SQLite is for
database, SSL is for Internet security etc.

3. Android Runtime

 Android Runtime includes core libraries and Dalvik Virtual Machine (DVM)
which is responsible to run android application.

 Dalvik Virtual Machine (DVM) is like Java Virtual Machine (JVM) in Java, but
DVM is optimized for mobile Devices.

 DVM makes use of the Linux core features like memory management and multi-
threading, which are essential in the Java language.

 DVM provides fast performance and consumes less memory.

4. Application Framework

 Android framework provides a lot of classes and interfaces for Android
application development and higher level services to the applications in the form
of Java classes.

 It includes Android API's such as Activity manager, Window manager, Content
Provider, Telephony Manager, etc.

 Activity manger is responsible for controlling all the aspects of the application
lifecycle and activity stack, Content provider is responsible for allowing the
applications to publish and share the data with the other applications, View
system is responsible for creating application user interfaces ,Notifications
Manager − Allows applications to display alerts and notifications to the user, etc.

5. Applications

 Applications are situated on the top of the Application framework.
 The applications such as Home, Contact, Alarm, Calendar, Camera, Browsers, etc.

use the Android framework which uses Android runtime and libraries. Android
runtime and Native libraries use Linux kernel.

 The user can write his/her application to be installed on this layer only.

Dalvik Virtual Machine | DVM

Dalvik is a purpose built virtual machine designed specifically for android which was

developed by Dan Bornstein and his team. Strictly it was developed for mobile devices.

While developing Dalvik Virtual Machine Dan Bornstein and his team realize the

constraints specific to the mobile environment which is not going to change in future at

least, like battery life, processing power and many more. So they optimized the Dalvik

Dalvik Virtual Machine

Dalvik VM (DVM) was developed by Google, led by Dan Bornstein, to optimize the performance of Java
applications on mobile devices with limited capabilities (Dalvik is actually the name of a town in
Iceland). DVM takes the traditional Java classes (".class") and combines them into one or more Dalvik
Executable (".dex") files. By removing duplicate information among the Java classes, it reduces the
resultant file size compared with the traditional JAR file. However, as a result, the DVM is not binary-
compatible with Java Virtual Machine (JVM). You need to convert the ".class" into ".dex".

virtual machine. Dalvik virtual machine uses register based architecture. With this

architecture Dalvik virtual machine has few advantages over JAVA virtual machine

such as:

1. Dalvik uses its own 16 bit instruction set than java 8 bit stack instructions, which

reduce the Dalvik instruction count and raised its interpreter speed.

2. Dalvik use less space, which means an uncompressed .dex file is smaller in

size(few bytes) than compressed java archive file(.jar file).

Why Java Virtual Machine is not used?

There is a key aspect of replacing the Java virtual machine with the Dalvik virtual

machine is its licensing. The java language, java tools and java libraries are free but the

java virtual machine (which is a Stack Machines) is not. Nowadays there are other open

source alternatives to Oracle Java virtual machine such as Open JDK and Apache

Harmony projects. Android provides a full featured platform by developing a truly

open source and license friendly virtual machine and it also encouraged the developers

and mobile companies to adopt for a variety of devices without having to worry about

the license.

Role of Dalvik Virtual Machine

The role of Dalvik virtual machine is that, In java we write and compile java program

using java compiler and run that bytecode on the java virtual machine. On the other

side, In android we still write and compile java source file(bytecode) on java compiler,

but at that point we recompile it once again using Dalvik compiler to Dalvik

bytecode(dx tool converts java .class file into .dex format) and this Dalvik bytecode is

then executed on the Dalvik virtual machine.

Note: Dalvik team have added Just In Time (JIT) compiler to the Dalvik Virtual Machine. The

JIT is a software component which takes application code, analyzes it, and actively translates it

into a form that runs faster, doing so while the application continues to run.

The Java VM is stack-based virtual machine. Once Java compiler translates Java source

code into .class (byte code), the JVM runtime environment executes byte code or .jar files

emulating JVM instruction set by interpreting or by Just-in Time (JIT) compiling.

As shown in the following picture, the byte code generated by the compiler can be used

by multiple Java virtual machines running on different operating systems. For example,

byte code generated on Windows OS can be fed to JVM running on Linux OS without the

need to recompile.

Dalvik Virtual Machine (DVM) is register-based and the use of registers instead of stack

is mostly due to use of DVM for mobile devices. Android is an open source mobile

platform from Google and is based on Linux kernel with DVM as the process or

application VM. Unlike regular desktop computing, mobile devices have special design

constrains such as:

 Limited memory

 Limited processor speed

 Variety of screen sizes and resolutions

 No swap space

 Battery power

The DVM architecture design takes into account most the above mentioned constraints

making it different from JVM.

JVM vs. DVM

Java Virtual Machines and Dalvik Virtual Machines have significant differences in the

architecture design and functionality. We present comparison of two VMs using memory

usage, architecture design, compilation techniques, and library support as parameters.

Memory Usage Comparison

Java Virtual machine (JVM) uses heap memory for its application. It has a built-in garbage

collector that manages the internal memory. When a java program needs memory, it

requests memory from JVM. In case there is no memory left, JVM automatically reclaims

memory for reuse using garbage collector without memory allocation and deallocation.

This feature eliminates memory leaks and other memory-related problems. However,

JVM uses most of its resources on garbage collection, which leads to serious performance

problem. For example, JVM has trouble releasing more of its memory when an “out of

memory” exception is thrown. JVM uses big proportion of its memory for runtime

libraries created in shared memory. On the contrary, in Dalvik VM, programs are

commonly written in Java, compiled to byte code, and then converted from JVM-

compatible .class files to Dalvik Executable files, which can be executed directly. The

compact Dalvik Executable format has low memory requirement, which is suitable for

systems with limited memory and processor speed, i.e. mobile phones, tablet computers,

embedded devices such as smart TVs.

Architecture Comparison

The JVM architecture is designed to support most of the popular operating systems

whereas DVM architecture is specifically targeted for the Android platform. Since mobile

devices run in a constraint environment, they must make efficient use of storage,

memory, battery power, and processor power. Dalvik’s register-based architecture

allows Android to be more efficient and faster compared to the stack-based design of the

JVM. Also, Android platform is designed to run apps from thousands of users and

vendors; it must provide a high-level of security for individual apps as well as for the

platform itself. Android provides security by giving each app its own virtual machine

which is different than the JVM approach where all applications share same virtual

machine.

The following picture shows a dex file which combines multiple .class files into a single

file. Different items such as constants, variables, methods, and classes are grouped into

separate sections in the dex file and then are accessed by respective classes through pool

indexing.

Because each app in Android runs in its own process with its own instance of the Dalvik

virtual machine, a device can run multiple VMs efficiently with minimum memory. This

feature in part possible due to use of Dalvik Executable (.DEX) file format on DVM.

Multiple Instance and JIT Comparison

JVM runtime executes .class or .jar files using a just-in-time compiler (JIT). JIT causes

delay in initial execution of an application due to the time it takes to load and compile

the byte code. In the worst case, it may crash the system if resources become unavailable

for applications. These become an obvious disadvantage when it is used in limited system

resources such as tablets and cell phones. Dalvik uses ahead-of-time optimization that

involves the instruction modification. Therefore, it allows multiple instances of VM to

run simultaneous with low memory requirement.

Reliability Comparison

In current standard Java runtime systems, the failure of a single component can have

significant impacts on other components. In the worst case, a malicious or erroneous

component may crash the whole system. On the other hand, Dalvik runs every instance

of VM in its own separate process. Separate processes prevent all applications from

crashing in case if the VM for a specific app crashes.

Supported Libraries Comparison

The Dalvik VM like JVM has built-in support for core java programming packages. In

addition to core packages, Dalvik has its own set of packages such as com.google.* and

android.*. The following table lists subset of packages for Dalvik and standard Java.

As we know the modern JVM is high performance and provides excellent memory
management. But it needs to be optimized for low-powered handheld devices as well.

The Dalvik Virtual Machine (DVM) is an android virtual machine optimized for
mobile devices. It optimizes the virtual machine for memory, battery life and performance.

Dalvik is a name of a town in Iceland. The Dalvik VM was written by Dan Bornstein.

The Dex compiler converts the class files into the .dex file that run on the Dalvik VM.
Multiple class files are converted into one dex file.

Let's see the compiling and packaging process from the source file:

The javac tool compiles the java source file into the class file.

The dx tool takes all the class files of your application and generates a single .dex file. It

is a platform-specific tool.

The Android Assets Packaging Tool (aapt) handles the packaging process.

I Phone OS

iOS, which was previously called iPhone OS, is a mobile operating system developed

by Apple Inc. Its first release was in 2007, which included iPhone and iPod Touch. iPad

(1st Generation) was released in April 2010 and iPad Mini was released in November

2012.

Apple iOS features

Apple iOS includes the following features:

 Wi-Fi, Bluetooth and cellular connectivity, along with VPN support;

 Integrated search support, which enables simultaneous search through files,

media, applications and email;

 Gesture recognition supports - for example, shaking the device to undo the most

recent action;

 Push email;

 Safari mobile browser;

 Integrated front- and rear-facing cameras with video capabilities;

 Direct access to the Apple App Store and the iTunes catalog of music, podcasts,

television shows and movies available to rent or purchase;

 Compatibility with Apple's cloud service, iCloud;

 Siri personal assistant;

 Cross-platform communications between Apple devices through AirDrop

 Android IOs

Source model Open source
Closed, with open source

components.

OS family Linux OS X, UNIX

Initial release September 23, 2008 July 29, 2007

Customizability
A lot. Can change almost

anything.
Limited unless jailbroken

Developer Google, Open Handset Alliance Apple Inc.

Widgets Yes No, except in Notification Center

Available

language(s)
100+ Languages 34 Languages

File transfer

Easier than iOS. Using USB port

and Android File Transfer

desktop app. Photos can be

transferred via USB without

apps.

More difficult. Media files can be

transferred using iTunes desktop

app. Photos can be transferred out

via USB without apps.

Available on

Many phones and tablets. Major

manufacturers are Samsung,

Motorola, LG, HTC and Sony.

Nexus and Pixel line of devices

is pure Android, others bundle

manufacturer software.

iPod Touch, iPhone, iPad, Apple

TV (2nd and 3rd generation)

Calls and

messaging

Google Hangouts. 3rd party

apps like Facebook Messenger,

WhatsApp, Google Duo and

Skype all work on Android and

iOS both.

iMessage, FaceTime (with other

Apple devices only). 3rd party

apps like Google Hangouts,

Facebook Messenger, WhatsApp,

Google Duo and Skype all work

on Android and iOS both.

Internet browsing

Google Chrome (or Android

Browser on older versions; other

browsers are available)

Mobile Safari (Other browsers are

available)

App store ,

Affordability and

interface

Google Play – 1,000,000+ apps.

Other app stores like Amazon

and Getjar also distribute

Android apps. (unconfirmed

".APKs")

Apple app store – 1,000,000+ apps

Video chat
Google Duo and other 3rd party

apps

FaceTime (Apple devices only)

and other 3rd party apps

Voice commands Google Now, Google Assistant Siri

Working state Current Current

Maps Google Maps

Apple Maps (Google Maps also

available via a separate app

download)

Latest stable

release and

Updates

Android 8.0.0, Oreo (Aug 21,

2017)
11 (Sep 19, 2017)

Alternative app

stores and side

loading

Several alternative app stores

other than the official Google

Play Store. (e.g. Aptoide, Galaxy

Apps)

Apple blocks 3rd party app

stores. The phone needs to be

jailbroken if you want to

download apps from other stores.

Battery life and

management

Many Android phone

manufacturers equip their

devices with large batteries with

a longer life.

Apple batteries are generally not

as big as the largest Android

batteries. However, Apple is able

to squeeze decent battery life via

hardware/software

optimizations.

Open source
Kernel, UI, and some standard

apps

The iOS kernel is not open source

but is based on the open-source

Darwin OS.

File manager

Yes. (Stock Android File

Manager included on devices

running Android 7.1.1)

Not available

Photos & Videos

backup

Apps available for automatic

backup of photos and videos.

Google Photos allows unlimited

backup of photos. OneDrive,

Amazon Photos and Dropbox

are other alternatives.

Up to 5 GB of photos and videos

can be automatically back up with

iCloud. All other vendors like

Google, Amazon, Dropbox, Flickr

and Microsoft have auto-backup

apps for both iOS and Android.

Security

Android software patches are

available soonest to Nexus

device users. Manufacturers

tend to lag behind in pushing

out these updates. So at any

given time a vast majority of

Android devices are not running

updated fully patched software.

Most people will never encounter

a problem with malware because

they don’t go outside the Play

Store for apps. Apple's software

updates support older iOS

devices also.

Rooting,

bootloaders, and

jailbreaking

Access and complete control

over your device is available and

you can unlock the bootloader.

Complete control over your

device is not available.

Cloud services

Native integration with Google

cloud storage. 15GB free, $2/mo

for 100GB, 1TB for $10. Apps

available for Amazon Photos,

OneDrive and Dropbox.

Native integration with iCloud.

5GB free, 50GB for $1/mo, 200GB

for $3/mo, 1TB for $10/mo. Apps

available for Google Drive and

Google Photos, Amazon Photos,

OneDrive and Dropbox.

Interface Touch Screen Touch Screen

Supported

versions

Android 5.0 & later (Android 4.4

is also supported but with

patches)

iOS 8 & later

First version Android 1.0, Alpha iOS 1.0

iOS Architecture

Architecture of iOs is a layered architecture.

At the uppermost level iOS works as an intermediary between the underlying hardware

and the apps you make. Apps do not communicate to the underlying hardware directly.

Apps talk with the hardware through a collection of well-defined system interfaces.

Lower layers gives the basic services which all application relies on and higher level

layer gives sophisticated graphics and interface related services.

Apple provides most of its system interfaces in special packages called frameworks.

Cocoa Touch Layer

The Cocoa Touch layer provides the following frameworks for iPhone app

development:

Contents:

1. UIKit Framework (UIKit.framework)

2. Map Kit Framework (MapKit.framework)

3. Push Notification Service

4. Message UI Framework (MessageUI.framework)

5. Address Book UI Framework (AddressUI.framework)

6. Game Kit Framework (GameKit.framework)

UI Kit Framework (UIKit.framework)

UI Kit framework is a vast and feature rich Objective-C based programming interface. It

is, without question, the framework with which you will spend most of your time

working. Entire books could, and probably will, be written about the UIKit framework

alone. Some of the key features of UIKit are as follows:

 User interface creation and management (text fields, buttons, labels, colors, fonts etc)

 Application lifecycle management

 Application event handling (e.g. touch screen user interaction)

 Cut, copy, and paste functionality

 Web and text content presentation and management

 Data handling

 Inter-application integration

 Push notification in conjunction with Push Notification Service

 Accessibility

 Accelerometer, battery, proximity sensor, camera and photo library interaction.

Map Kit Framework (Map Kit. framework)

If you have spent any appreciable time with an iPhone then the chances are you have

needed to use the Maps application more than once, either to get a map of a specific area

or to generate driving directions to get you to your intended destination. The Map Kit

framework provides you with a programming interface that enables you to build map

based capabilities into your own applications. This allows you to, amongst other things,

display scrollable maps for any location, display the map corresponding to the current

geographical location of the device and annotate the map in a variety of ways.

Push Notification Service

The Push Notification Service allows applications to notify users of an event even when

the application is not currently running on the device. Since the introduction of this

service it has most commonly been used by news based applications. Typically when

there is breaking news the service will generate a message on the device with the news

headline and provide the user the option to load the corresponding news app to read

more details. This alert is typically accompanied by an audio alert and vibration of the

device. This feature should be used sparingly to avoid annoying the user with frequent

interruptions.

Message UI Framework (Message UI.framework)

The Message UI framework provides everything you need to allow users to compose and

send email messages from within your application. In fact, the framework even provides

the user interface elements through which the user enters the email addressing

information and message content. Alternatively, this information can be pre-defined

within your application and then displayed for the user to edit and approve prior to

sending.

Address Book UI Framework (AddressUI.framework)

Given that a key function of the iPhone is as a communications device and digital

assistant it should not come as too much of a surprise that an entire framework is

dedicated to the integration of the address book data into your own applications. The

primary purpose of the framework is to enable you to access, display, edit and enter

contact information from the iPhone address book from within your own application.

Game Kit Framework (GameKit.framework)

The Game Kit framework provides peer-to-peer connectivity and voice communication

between multiple devices and users allowing those running the same app to interact.

When this feature was first introduced it was anticipated by Apple that it would

primarily be used in multi-player games (hence the choice of name) but the possible

applications for this feature clearly extend far beyond games development.

OS Media Layer:

The role of the Media layer is to provide the iPhone OS with audio, video, animation

and graphics capabilities. As with the other layers comprising the iPhone OS stack, the

Media layer comprises a number of frameworks that can be utilized when developing

iPhone apps. In this section we will look at each one in turn.

Contents

1 Core Graphics Framework (CoreGraphics.framework)

2 Quartz Core Framework (QuartzCore.framework)

3 OpenGL ES framework (OpenGLES.framework)

4 iPhone Audio Support

5 AV Foundation framework (AVFoundation.framework)

6 Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework

and AudioUnit.framework)

7 Open Audio Library (OpenAL)

8 Media Player framework (MediaPlayer.framework)

Core Graphics Framework (CoreGraphics.framework)

The iPhone Core Graphics Framework (otherwise known as the Quartz 2D API) provides

a lightweight two dimensional rendering engine. Features of this framework include PDF

document creation and presentation, vector based drawing, transparent layers, path

based drawing, anti-aliased rendering, color manipulation and management, image

rendering and gradients. Those familiar with the Quartz 2D API running on MacOS X

will be pleased to learn that the implementation of this API is the same on the iPhone.

Quartz Core Framework (QuartzCore.framework)

The purpose of the Quartz Core framework is to provide animation capabilities on the

iPhone. It provides the foundation for the majority of the visual effects and animation

used by the UIKit framework and provides an Objective-C based programming interface

for creation of specialized animation within iPhone apps.

OpenGL ES framework (OpenGLES.framework)

For many years the industry standard for high performance 2D and 3D graphics drawing

has been OpenGL. Originally developed by the now defunct Silicon Graphics, Inc (SGI)

during the 1990s in the form of GL, the open version of this technology (OpenGL) is now

under the care of a non-profit consortium comprising a number of major companies

including Apple, Inc., Intel, Motorola and ARM Holdings.

OpenGL for Embedded Systems (ES) is a light weight version of the full OpenGL

specification designed specifically for smaller devices such as the iPhone.

Version 3.0 of the iPhone OS supports both OpenGL ES 1.1 and 2.0 on certain iPhone

models (such as the iPhone 3GS). Earlier versions of the iPhone OS and older models

support only OpenGL ES version 1.1.

iPhone Audio Support

The iPhone OS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law,

IMA/ADPCM, Linear PCM, µ-law, DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and

AES3-2003 formats through the support provided by the following frameworks.

AV Foundation framework (AVFoundation.framework)

An Objective-C based framework designed to allow the playback, recording and

management of audio content.

Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and

AudioUnit.framework)

The frameworks that comprise Core Audio for the iPhone OS define supported audio

types, playback and recording of audio files and streams and also provide access to the

device’s built-in audio processing units.

Open Audio Library (OpenAL)

OpenAL is a cross platform technology used to provide high-quality, 3D audio effects

(also referred to as positional audio). Positional audio can be used in a variety of

applications though is typically using to provide sound effects in games.

Media Player framework (MediaPlayer.framework)

The iPhone OS Media Player framework is able to play video in .mov, .mp4, .m4v, and

.3gp formats at a variety of compression standards, resolutions and frame rates.

OS Core Services Layer:

The iPhone Core Services layer provides much of the foundation on which the above

layers are built and consists of the following frameworks.

Contents

1 Address Book framework (AddressBook.framework)

2 Core Data Framework (CoreData.framework)

3 Core Foundation Framework (CoreFoundation.framework)

4 Foundation Framework (Foundation.framework)

5 Core Location Framework (CoreLocation.framework)

6 Store Kit Framework (StoreKit.framework)

7 SQLite library

Address Book framework (AddressBook.framework)

The Address Book framework provides programmatic access to the iPhone Address Book

contact database allowing applications to retrieve and modify contact entries.

Core Data Framework (CoreData.framework)

This framework is provided to ease the creation of data modeling and storage in Model-

View-Controller (MVC) based applications. Use of the Core Data framework significantly

reduces the amount of code that needs to be written to perform common tasks when

working with structured data in an application.

Core Foundation Framework (CoreFoundation.framework)

The Core Foundation is a C-based Framework that provides basic functionality such as

data types, string manipulation, raw block data management, URL manipulation, threads

and run loops, date and times, basic XML manipulation and port and socket

communication. Additional XML capabilities beyond those included with this

framework are provided via the libXML2 library. Though this is a C-based interface, most

of the capabilities of the Core Foundation framework are also available with Objective-C

wrappers via the Foundation Framework.

Foundation Framework (Foundation.framework)

The Foundation framework is the standard Objective-C framework that will be familiar

to those that have programmed in Objective-C on other platforms (most likely Mac OS

X). Essentially, this consists of Objective-C wrappers around much of the C-based Core

Foundation Framework.

 Core Location Framework (CoreLocation.framework)

The Core Location framework allows you to obtain the current geographical location of

the device (latitude and longitude) and compass readings from with your own

applications. The method used by the device to provide coordinates will depend on the

data available at the time the information is requested and the hardware support

provided by the particular iPhone model on which the app is running (GPS and compass

are only featured on recent models). This will either be based on GPS readings, WiFi

network data or cell tower triangulation (or some combination of the three).

Store Kit Framework (StoreKit.framework)

The purpose of the Store Kit framework is to facilitate commerce transactions between

your application and the Apple App Store. Prior to version 3.0 of the iPhone OS, it was

only possible to charge a customer for an app at the point that they purchased it from the

App Store. iPhone OS 3.0 introduced the concept of the “in app purchase” whereby the

user can be given the option make additional payments from within the application. This

might, for example, involve implementing a subscription model for an application,

purchasing additional functionality or even buying a faster car for you to drive in a racing

game.

SQLite library

Allows for a lightweight, SQL based database to be created and manipulated from

within your iPhone application.

OS Core OS Layer:

The Core OS Layer is the bottom layer of the iPhone OS stack and sits directly on top of

the device hardware. The layer provides a variety of services including low level

networking, access to external accessories and the usual fundamental operating system

services such as memory management, file system handling and threads.

Contents

1 CFNetwork Framework (CFNetwork.framework)

2 External Accessory framework (ExternalAccessory.framework)

3 Security Framework (Security.framework)

4 System (LibSystem)

 CFNetwork Framework (CFNetwork.framework)

The CFNetwork framework provides a C-based interface to the TCP/IP networking

protocol stack and low level access to BSD sockets. This enables application code to be

written that works with HTTP, FTP and Domain Name servers and to establish secure

and encrypted connections using Secure Sockets Layer (SSL) or Transport Layer Security

(TLS).

External Accessory framework (ExternalAccessory.framework)

Provides the ability to interrogate and communicate with external accessories connected

physically to the iPhone via the 30-pin dock connector or wirelessly via Bluetooth.

Security Framework (Security.framework)

The iPhone OS Security framework provides all the security interfaces you would expect

to find on a device that can connect to external networks including certificates, public and

private keys, trust policies, keychains, encryption, digests and Hash-based Message

Authentication Code (HMAC).

System (LibSystem)

As we have previously mentioned, the iPhone OS is built upon a UNIX-like foundation.

The System component of the Core OS Layer provides much the same functionality as

any other UNIX like operating system. This layer includes the operating system kernel

(based on the Mach kernel developed by Carnegie Mellon University) and device drivers.

The kernel is the foundation on which the entire iPhone OS is built and provides the low

level interface to the underlying hardware. Amongst other things the kernel is

responsible for memory allocation, process lifecycle management, input/output, inter-

process communication, thread management, low level networking, file system access

and thread management.

As an app developer your access to the System interfaces is restricted for security and

stability reasons. Those interfaces that are available to you are contained in a C-based

library called LibSystem. As with all other layers of the iPhone OS stack, these interfaces

should be used only when you are absolutely certain there is no way to achieve the same

objective using a framework located in a higher OS layer.

Event Handling

What is an Event?

Change in the state of an object is known as event i.e. event describes the change in state

of source. Events are generated as result of user interaction with the graphical user

interface components. For example, clicking on a button, moving the mouse, entering a

character through keyboard, selecting an item from list, scrolling the page are the

activities that causes an event to happen.

User interacts with the interface so as to execute specific tasks. Every action the user

performs while interacting with the user interface triggers an event

Types of Event

The events can be broadly classified into two categories:

 Foreground Events - Those events which require the direct interaction of user.

They are generated as consequences of a person interacting with the graphical

components in Graphical User Interface. For example, clicking on a button,

moving the mouse, entering a character through keyboard, selecting an item from

list, scrolling the page etc.

 Background Events - Those events that require the interaction of end user are

known as background events. Operating system interrupts, hardware or software

failure, timer expires, an operation completion are the example of background

events.

What is Event Handling?

Event Handling is the mechanism that controls the event and decides what should

happen if an event occurs. This mechanism have the code which is known as event

handler that is executed when an event occurs.

The concept of handling events is termed listening in Android.

Following are the three concepts related to Android Event Management,

1. Event Listener contains a single callback method. It is an interface in the View class.

2. Event Handler is the method that handles the event. The Event Listener calls the

Event Handlers.

3. Event Listener Registration is a process, where an Event Handler gets registered

with an Event Listener. Event Handler is called when the Event Listener fires the event.

Event Handler Event Listener & Description

onClick()

OnClickListener()

This is called when the user either clicks or touches or focuses upon

any widget like button, text, image etc. You will use onClick() event

handler to handle such event.

onLongClick() OnLongClickListener()

Callback

A callback function is one which is passed as an argument to another function and is invoked after

the completion of the parent function.

In other words callback is a piece of executable code that is passed as an argument to other code,

which is expected to call back (execute) the argument at some convenient time.

(OR)

Callback is a function passed as a parameter in another function. The callback is then called from

inside the function.

Listener - It is also known as event handler. Listener is responsible for generating response to an

event. Listener waits until it receives an event. Once the event is received, the listener process the

event and then returns.

This is called when the user either clicks or touches or focuses upon

any widget like button, text, image etc. for one or more seconds. You

will use onLongClick() event handler to handle such event.

onFocusChange()

OnFocusChangeListener()

This is called when the widget looses its focus ie. user goes away

from the view item. You will use onFocusChange() event handler to

handle such event.

onKey()

OnFocusChangeListener()

This is called when the user is focused on the item and presses or

releases a hardware key on the device. You will use onKey() event

handler to handle such event.

onTouch()

OnTouchListener()

This is called when the user presses the key, releases the key, or any

movement gesture on the screen. You will use onTouch() event

handler to handle such event.

onMenuItemClick()

OnMenuItemClickListener()

This is called when the user selects a menu item. You will use

onMenuItemClick() event handler to handle such event.

onCreateContextMenu()

onCreateContextMenuItemListener()

This is called when the context menu is being built(as the result of a

sustained "long click)

Event based programming is programming in which the code is based on events,

which are similar to broadcasts. For example, a "when mouse moved" event can trigger

all scripts when the mouse is moved. Events have their own attributes, called event

attributes. For example, when mouse moved can have the attributes current mouse x

position, previous mouse x position, distance moved, etc.

What is UI Toolkit?

UI Toolkit is a set of routines and utility programs that gives you the tools you need to create

user interfaces for your applications. Toolkit helps you provide a user interface that is easy to

use and includes the following:

 Color

 Drop-down menus

 Cascading menus

 Pop-up help

 ActiveX controls

 Tabbed dialogs

The UI Toolkit environment establishes and maintains input, prompts, messages, menus, help,

and other user interface details—so you don’t have to write such code yourself. Toolkit utilities

handle the user-interface details for you and ensure consistency throughout your application.

UI Toolkit is structured to support large applications. Its design assumes that the major functions

of your application will be supported by individual routines, while the main routine will consist

primarily of a small decision apparatus that makes the appropriate calls to these routines. These

routines and programs interact with window library files that UI Toolkit creates when it processes

the script files you have written.

Lightweight User Interface Toolkit (LWUIT) is a Widget toolkit developed by Sun Microsystems
to enable easier Java ME user interface development for existing devices, including not only traditional
Java ME environments like mobile phones, but also TVs and set top boxes.

Java Platform, Micro Edition or Java ME is a computing platform for development and deployment
of portable code for embedded and mobile devices (micro-controllers, sensors, gateways, mobile phones,
personal digital assistants, TV set-top boxes, printers).[1] Java ME was formerly known as Java 2
Platform, Micro Edition or J2ME.

Understanding Application Priority and Process States

Active Processes: Active (foreground) processes are those hosting applications with components
currently interacting with the user. These are the processes Android is trying to keep responsive
by reclaiming resources. There are generally very few of these processes, and they will be killed
only as a last resort.

Visible Processes: Visible, but inactive processes are those hosting “visible” Activities. As the
name suggests, visible Activities are visible, but they aren’t in the foreground or responding to
user events. This happens when an Activity is only partially obscured (by a non-full-screen or
transparent Activity). There are generally very few visible processes, and they’ll only be killed in
extreme circumstances to allow active processes to continue.

Started Service Processes: Processes hosting Services that have been started. Services support
ongoing processing that should continue without a visible interface. Because Services don’t
interact directly with the user, they receive a slightly lower priority than visible Activities. They
are still considered to be foreground processes and won’t be killed unless resources are needed
for active or visible processes.

Background Processes: Hosting Activities that aren’t visible and that don’t have any services that
have been started are considered background processes. There will generally be a large number
of background processes that Android will kill using a last-seen-first-killed pattern to obtain
resources for foreground processes.

Empty Processes: To improve overall system performance, Android often retains applications in
memory after they have reached the end of their lifetimes. Android maintains this cache to
improve the start-up time of applications when they’re re-launched. These processes are routinely
killed as required.

Activity Stacks
The state of each Activity is determined by its position on the Activity stack, a last-in–

first-out collection of all the currently running Activities. When a new Activity starts, the current
foreground screen is moved to the top of the stack. If the user navigates back using the Back
button, or the foreground Activity is closed, the next Activity on the stack moves up and becomes
active. This process is illustrated here

Activity States

Active: When an Activity is at the top of the stack, it is the visible, focused, foreground activity
that is receiving user input. Android will attempt to keep it alive at all costs, killing Activities
further down the stack as needed, to ensure that it has the resources it needs. When another
Activity becomes active, this one will be paused.

Paused: In some cases, your Activity will be visible but will not have focus; at this point, it’s
paused. This state is reached if a transparent or non-full-screen Activity is active in front of it.
When paused, an Activity is treated as if it were active; however, it doesn’t receive user input
events. In extreme cases, Android will kill a paused Activity to recover resources for the active
Activity. When an Activity becomes totally obscured, it becomes stopped.

Stopped: When an Activity isn’t visible, it “stops.” The Activity will remain in memory retaining
all state and member information; however, it is now a prime candidate for execution when the
system requires memory elsewhere. When an Activity is stopped, it’s important to save data and
the current UI state. Once an Activity has exited or closed, it becomes inactive.

Inactive: After an Activity has been killed, and before it’s been launched, it’s inactive. Inactive
Activities have been removed from the Activity stack and need to be restarted before they can
be displayed and used.

Android Activity Lifecycle

An activity is the single screen in android.

The 7 lifecycle method of Activity describes how activity will behave at 6 different

states.

Activity have six states:

1) Created

2) Started

3) Resumed

4) Paused

5) Stopped

6) Destroyed

Activity lifecycle have

seven methods:

1) onCreate()

2) onStart()

3) onResume()

4) onPause()

5) onStop()

6) onRestart()

7) onDestroy()

Full Time

Visible Life

Time
Active Life Time

Android Activity Lifecycle methods

Let's see the 7 lifecycle methods of android activity.

Method Description

onCreate Called when activity is first created.

onStart Called when activity is becoming visible to the user.

onResume Called when activity will start interacting with the user.

onPause Called when activity is not visible to the user.

onStop Called when activity is no longer visible to the user.

onRestart Called after your activity is stopped, prior to start.

onDestroy Called before the activity is destroyed.

Intent

An Intent is an "intention" to perform an action;

An Intent is basically a message that is passed between components (such as Activities,

Services, Broadcast Receivers, and Content Providers).

(or)

Intents are used as a message-passing mechanism that lets you declare your intention

that an action be performed, usually with (or on) a particular piece of data.

 Intent is an intention to do something.

 Intent contains an action carrying some information.

 Intent is used to communicate between android components.

 Intent is used to communicate, share data between components.

Android intents are mainly used to:

 Start an Activity

 Start a Service

 Pass data in same application or different application

 Deliver a Broadcast Message

Any android application comprises one or more activities. In order to launch

another activity from a particular activity we’ve to use a particular app component that

android has called Intent. An Intent is basically an intention to do an action. It’s a way to

communicate between Android components (not just activities) to request an action

from and by different components. It’s like a message that Android listens for and react

accordingly by identifying and invoking the appropriate app’s appropriate component

(like an Activity, Service, Content Provider, etc.) within that same application or some

other app. If multiple apps are capable of responding to the message then Android

provides the user with a list of those apps from which a choice can be made.

Using intents you can accomplish a lot of things like navigating from one activity

to another, start an external app’s activity so that the user can attain tasks like taking

pictures via camera app, picking a contact using the contacts app, pinning location on

maps using google maps, sending an email via Gmail, sharing status using WhatsApp

or Facebook, etc.

There are two types of Intents: Explicit and Implicit.

Explicit Intent: It is used to call a specific component. When you know which

component you want to launch and you do not want to give the user free control over

which component to use. For example, you have an application that has 2 activities.

Activity A and activity B. You want to launch activity B from activity A. In this case you

define an explicit intent targeting activity B and then use it to directly call it.

“Communicates between two activities inside the same application.”

Implicit Intent: It is used when you have an idea of what you want to do, but you do not

know which component should be launched. Or if you want to give the user an option to

choose between a list of components to use. If these Intents are send to the Android

system it searches for all components which are registered for the specific action and the

data type. If only one component is found, Android starts the component directly.

“Communicates between two activities of different application.”

 Typically we use explicit intents to fire components from our own app whereas

implicit intents to launch components from other third party apps.

Intents are used for Broadcasting Messages:

Intents can also be used to broadcast messages across the system. Any application

can register a Broadcast Receiver to listen for, and react to, these broadcast Intents. This

lets you create event-driven applications based on internal, system, or third-party

application events.

Android uses broadcast Intents to announce system events, like changes in

Internet connection status or battery charge levels. The native Android applications, such

as the phone dialer and SMS manager, simply register components that listen for specific

broadcast Intents — such as “incoming phone call” or “SMS message received” — and

react accordingly.

For Ex. Suppose your phone has a low battery then Your Android operating

system will pass a message to all the application saying that Your battery is low and other

applications will receive this message via the broadcast receivers, this communication

between the OS and the application is carried out by intents.

Services

Android offers the Service class to create application components specifically to handle

operations and functionality that should run invisibly, without a user interface.

A service is a component that runs in the background to perform long-running

operations without needing to interact with the user and it works even if application is

destroyed.

(Or)

A service is a component which runs in the background without direct interaction with

the user. As the service has no user interface, it is not bound to the lifecycle of an activity.

By using Services, you can ensure that your applications continue to run and respond to

events, even when they’re not in active use.

Services run without a dedicated GUI, but, like Activities and Broadcast Receivers, they

still execute in the main thread of the application’s process. To help keep your

applications responsive,

Unlike Activities, which present a rich graphical interface to users, Services run in the

background updating your Content Providers, firing Intents, and triggering notifications.

They are the perfect way to perform regular processing or handle events even after your

application’s Activities are invisible, inactive, or have been closed.

With no visual interface, Services are started, stopped, and controlled from other

application components including other Services, Activities, and Broadcast Receivers. If

your application regularly, or continuously, performs actions that don’t depend directly

on user input, Services may be the answer.

Started Services receive higher priority than inactive or invisible Activities, making them

less likely to be terminated by the run time’s resource management. The only time

Android will stop a Service prematurely is when it’s the only way for a foreground

Activity to gain required resources; if that happens, your Service will be restarted

automatically when resources become available.

Applications that update regularly but only rarely or intermittently need user interaction

are good candidates for implementation as Services. MP3 players and sports-score

monitors are examples of applications that should continue to run and update without

an interactive visual component (Activity) visible.

 There is nor onPause() or onResume() in Services as like in Activity.

 Services doesn’t have UI.

Services can be of two types – Started and Bound

Started Service

Started services are those that are launched by other application components like an

Activity or a Broadcast Receiver. They can run indefinitely in the background until

stopped or destroyed by the system to free up resources.

Bound Services

A Bound Service is the server in a client- server interface. A Bound Service allows

components (such as Activities) to bind to the service, send requests, receive responses

and even perform inter-process communication (IPC).

While working with Android services, there comes a situation where we would want the

service to communicate with an activity. To accomplish this task one has to bind a

service to an activity, this type of service is called an android bound service. After a

service is bound to an activity one can return the results back to the calling activity.

onBind()

The system calls this method when another component wants to bind with the service

by calling bindService(). If you implement this method, you must provide an interface

that clients use to communicate with the service, by returning an IBinder object. You

must always implement this method, but if you don't want to allow binding, then you

should return null.

onUnbind()

The system calls this method when all clients have disconnected from a particular

interface published by the service.

Started services cannot return results/values or

interact with its starting component. Bound services on

the other hand can send data to the launching

component (client). So for example a bound service

might be playing an audio file and sending data

regarding audio start/pause/stop and the time

elapsed to the launching Activity component so that

the UI can be updated accordingly.

Understanding Started and Bound Service by

background music example

Suppose, I want to play music in the background, so

call start Service () method. But I want to get

information of the current song being played, I will

bind the service that provides information about the

current song.

Running a Service in the Foreground

A Foreground Service is one where the user is actively

aware of it putting it on high priority hence won’t be killed when the system is low on

memory. It must provide a notification for the status bar which cannot be dismissed

unless the Service is stopped or removed from the foreground. A good example of such

a notification is a music player that shows the current song and other action buttons like

play/pause, next, previous, etc. in a notification in the status bar. VOIP calls or file

download apps could also start a foreground Service and show similar notifications.

Stopping a service

You stop a service via the stopService() method. No matter how frequently you called

the startService(intent) method, one call to the stopService() method stops the service.

A service can terminate itself by calling the stopSelf() method. This is typically done if

the service finishes its work.

Toasts

A toast provides simple feedback about an operation in a small popup. It only fills the

amount of space required for the message and the current activity remains visible and

interactive. For example, navigating away from an email before you send it triggers a

"Draft saved" toast to let you know that you can continue editing later. Toasts

automatically disappear after a timeout.

Android offers several techniques for applications to communicate with users without an

Activity. You’ll learn how to use Notifications and Toasts to alert and update users

without interrupting the active application.

Toasts are a transient, non-modal dialog-box mechanism used to display information to

users without stealing focus from the active application. You’ll learn to display Toasts

from any application component to send unobtrusive on-screen messages to your users.

Where Toasts are silent and transient, Notifications represent a more robust mechanism

for alerting users. In many cases, when the user isn’t actively using the mobile phone it

sits silent and unwatched in a pocket or on a desk until it rings, vibrates, or flashes.

Should a user miss these alerts, status bar icons are used to indicate that an event has

occurred. All these attention-grabbing antics are available to your Android application

through Notifications.

Storing and Retrieving Data

Saving and loading data is an essential requirement for most applications. At a minimum,

Activities should save their User Interface (UI) state each time they move out of the

foreground.

Android provides the SQLite database library. The SQLite database offers a powerful

native SQL database over which you have total control.

Android provides several options for you to save persistent application data. The

solution you choose depends on your specific needs, such as whether the data should be

private to your application or accessible to other applications (and the user) and how

much space your data requires.

Store private primitive data in key-value pairs.

Shared Preferences

When storing the UI state, user preferences, or application settings, you want a

lightweight mechanism to store a known set of values. Shared Preferences let you save

groups of key/value pairs of primitive data as named preferences.

Internal Storage

Store private data on the device memory.

You can save files directly on the device's internal storage. By default, files saved to the

internal storage are private to your application and other applications cannot access them

(nor can the user). When the user uninstalls your application, these files are removed.

External Storage

Store public data on the shared external storage.

Every Android-compatible device supports a shared "external storage" that you can use

to save files. This can be a removable storage media (such as an SD card) or an internal

(non-removable) storage. Files saved to the external storage are world-readable and can

be modified by the user when they enable USB mass storage to transfer files on a

computer.

Caution: External storage can become unavailable if the user mounts the external storage

on a computer or removes the media, and there's no security enforced upon files you save

to the external storage. All applications can read and write files placed on the external

storage and the user can remove them.

SQ Lite Databases:

Store structured data in a private database.

Android provides full support for SQLite databases. Any databases you create will be

accessible by name to any class in the application, but not outside the application.

When managed, structured data is the best approach; Android offers the SQ Lite

relational database library. Every application can create its own databases over which it

has total control.

What is SQLite?

SQLite is an Open Source database. SQLite supports standard relational database

features like SQL syntax, transactions and prepared statements. The database requires

limited memory at runtime (approx. 250 KByte) which makes it a good candidate from

being embedded into other runtimes.

SQLite is embedded into every Android device. Using a SQLite database in Android

does not require a setup procedure or administration of the database.

You only have to define the SQL statements for creating and updating the database.

Afterwards the database is automatically managed for you by the Android platform.

(Or)

SQLite is an open-source relational database i.e. used to perform database operations

on android devices such as storing, manipulating or retrieving persistent data from the

database.

It is embedded in android by default. So, there is no need to perform any database

setup or administration task.

Content Provider Storage:

Content Providers Rather than a storage mechanism in their own right, Content

Providers let you expose a well-defined interface for using and sharing private data.

You can control access to Content Providers using the standard permission system.

Network Connection:

Store data on the web with your own network server.

Android provides a way for you to expose even your private data to other applications

with a content provider. A content provider is an optional component that exposes

read/write access to your application data, subject to whatever restrictions you want to

impose.

Location based Services (LBS)

The services that let you find the device’s current location. They include

technologies like GPS and Google’s cell-based location technology. You can specify which

location-sensing technology to use explicitly by name, or implicitly by defining a set of

criteria in terms of accuracy, cost, and other requirements.

Maps and location-based services use latitude and longitude to pinpoint

geographic locations, but your users are more likely to think in terms of an address.

Android provides a Geocoder that supports forward and reverse geocoding. Using the

Geocoder, you can convert back and forth between latitude/longitude values and real-

world addresses.

Used together, the mapping, geocoding, and location-based services provide a

powerful toolkit for incorporating your phone’s native mobility into your mobile

applications.

Using Location-Based Services

 Find and track the device location.
 Create proximity alerts.
 Turn geographical locations into street addresses and vice versa.
 Create and customize map-based Activities using Map View and Map Activity.

Location-based services (LBS) is an umbrella term used to describe the different
technologies used to find the device’s current location. The two main LBS elements are:

❑ Location Manager: Provides hooks to the location-based services.

❑ Location Providers: Each of which represents a different location-finding technology
 used to determine the device’s current location.
Using the Location Manager, you can:

❑ Obtain your current location.

❑ Track movement.

❑ Set proximity alerts for detecting movement into and out of a specified area.
Geocoder

Geocoding lets you translate between street addresses and longitude/latitude map

coordinates. This can give you a recognizable context for the locations and coordinates

used in location-based services and map-based Activities.

The Geocoder class provides access to two geocoding functions:

❑ Forward Geocoding finds the latitude and longitude of an address.

❑ Reverse Geocoding Finds the street address for a given latitude and longitude.

Packaging an Android Application: The .apk File

Android provides an application called apk builder for generating installable Android

application files, which have the extension .apk. An .apk file is in ZIP file format, just

like many other Java-oriented application formats, and contains the application manifest,

compiled application classes, and application resources. Android provides the utility

aapt (stands for Android Asset Packaging Tool. This tool is part of the SDK (and build

system) and allows you to view, create, and update Zip-compatible archives (zip, jar,

apk). It can also compile resources into binary assets.) for packaging the files that make

up an .apk file, but developers typically prefer to allow their development environment

to use this utility to build their applications for them. Most users simply rely on their IDE

to build their .apk.

Once a developer has created an .apk file, he can choose to make it available for

installation onto a device in one of several ways:

 Using the .adb (Android Debug Bridge is a versatile command-line tool

that lets you communicate with a device (an emulator or a connected

Android device). interface directory, or more commonly by using an IDE

(integrated development environment)

 Using an SD card

 Making the file available on a web server

 Uploading the file to the Android Market, and then selecting Install

Placing an Application for Distribution in the Android Market

Putting an application on the Android Market is remarkably easy. The only prerequisite

is that you have a Google account such as a Gmail account. A $25 credit card transaction

and some information about yourself are all you need to start uploading applications to

the Android Market. Charging for applications and getting paid takes only slightly

more information and effort—you don’t even need a website or a corporate entity.

API – Application program interface

Application program interface (API) is a set of routines, protocols, and tools for building

software applications. An API specifies how software components should interact.

Additionally, APIs are used when programming graphical user interface (GUI)

components. A good API makes it easier to develop a program by providing all the

building blocks.

Introducing Notifications

Notifications are a way for your applications to alert users, without using an Activity.

Notifications are handled by the Notification Manger, and currently include the ability

to:

 Create a new status bar icon.

 Display additional information (and launch an Intent) in the

extended status bar window.

 Flash the lights/LEDs.

 Vibrate the phone.

 Sound audible alerts (ringtones, media store sounds).

Notifications are the preferred way for invisible application components (Broadcast

Receivers, Services, and inactive Activities) to alert users that events have occurred that

require attention.

As a User Interface metaphor, Notifications are particularly well suited to mobile

devices. It’s likely that your users will have their phones with them at all times but

quite unlikely that they will be paying attention to them, or your application, at any

given time. Generally, users will have several applications open in the background, and

they won’t be paying attention to any of them. In this environment, it’s important that

your applications be able to alert users when specific events occur that require their

attention.

Notifications can be persisted through insistent

repetition, or (more commonly) by using an icon

on the status bar. Status bar icons can be updated

regularly or expanded to show additional

information using the expanded status bar

window shown in Figure.

Introducing the Notification Manager

The Notification Manager is a system Service used to handle Notifications. Get a

reference to it using the getSystemService method, as shown in the snippet below:

String svcName = Context.NOTIFICATION_SERVICE;

NotificationManager notificationManager;

notificationManager = (NotificationManager)getSystemService(svcName);

Using the Notification Manager, you can trigger new Notifications, modify existing

ones, or remove those that are no longer needed or wanted.

Triggering Notifications

To fire a Notification, pass it in to the notify method on the Notification Manager along

with an integer reference ID, as shown in the following snippet:

int notificationRef = 1;

notificationManager.notify(notificationRef, notification);

To update a Notification that’s already been fired, re-trigger, passing the same reference

ID. You can pass in either the same Notification object or an entirely new one. As long

as the ID values are the same, the new Notification will be used to replace the status

icon and extended status window details.

You also use the reference ID to cancel Notifications by calling the cancel method on the

Notification

Manager, as shown below:

notificationManager.cancel(notificationRef);

Canceling a Notification removes its status bar icon and clears it from the extended

status window.

Advanced Notification Techniques

In the following sections, you’ll learn to enhance Notifications to provide additional

alerting through Hardware, in particular, by making the device ring, flash, and vibrate.

Making Sounds

Using an audio alert to notify the user of a device event (like incoming calls) is a technique

that predates the mobile, and has stood the test of time. Most native phone events from

incoming calls to new messages and low battery are announced by an audible ringtone.

Android lets you play any audio file on the phone as a Notification by assigning a

location URI to the sound property, as shown in the snippet below:

notification.sound = ringURI;

Vibrating the Phone

You can use the phone’s vibration function to execute a vibration pattern specific to

your Notification. Android lets you control the pattern of a vibration; you can use

vibration to convey information as well as get the user’s attention.

To set a vibration pattern, assign an array of longs to the Notification’s vibrate property.

Construct the array so that every alternate number is the length of time (in

milliseconds) to vibrate or pause, respectively.

Before you can use vibration in your application, you need to be granted permission.

Add a uses-permission to your application to request access to the device vibration

using the following code snippet:

<uses-permission android:name=”android.permission.VIBRATE”/>

The following example shows how to modify a Notification to vibrate in a repeating

pattern of 1 second on, 1 second off, for 5 seconds total.

long[] vibrate = new long[] { 1000, 1000, 1000, 1000, 1000 };

notification.vibrate = vibrate;

Flashing the Lights

Notifications also include properties to configure the color and flash frequency of the

device’s LED.

The ledARGB property can be used to set the LED’s color, while the ledOffMS and

ledOnMS properties let you set the frequency and pattern of the flashing LED. You can

turn the LED on by setting the ledOnMS property to 1 and the ledOffMS property to 0,

or turn it off by setting both properties to 0.

Once you have configured the LED settings, you must also add the

FLAG_SHOW_LIGHTS flag to the Notification’s flags property.

The following code snippet shows how to turn on the red device LED:

notification.ledARGB = Color.RED;

notification.ledOffMS = 0;

notification.ledOnMS = 1;

notification.flags = notification.flags | Notification.FLAG_SHOW_LIGHTS;

Controlling the color and flash frequency is another opportunity to pass additional

information to users.

Alarms

Alarms are an application independent way of firing Intents at predetermined times.

Alarms are set outside the scope of your applications, so they can be used to trigger

application events or actions even after your application has been closed. They can be

particularly powerful in combination with Broadcast Receivers, allowing you to set

Alarms that launch applications or perform actions without applications needing to be

open and active until they’re required.

Alarms in Android remain active while the device is in sleep mode and can optionally

be set to wake the device; however, all Alarms are canceled whenever the device is

rebooted.

Alarm operations are handled through the AlarmManager, a system Service accessed

via getSystemService as shown below:

AlarmManager alarms =

(AlarmManager)getSystemService(Context.ALARM_SERVICE);

To create a new Alarm, use the set method and specify an alarm type, trigger time, and

a Pending Intent to fire when the Alarm triggers. If the Alarm you set occurs in the past,

it will be triggered immediately.

Choose an alarm type

One of the first considerations in using a repeating alarm is what its type should be.

There are two general clock types for alarms: "elapsed real time" and "real time clock"

(RTC). Elapsed real time uses the "time since system boot" as a reference, and real time

clock uses UTC (wall clock) time. This means that elapsed real time is suited to setting

an alarm based on the passage of time (for example, an alarm that fires every 30

seconds) since it isn't affected by time zone/locale. The real time clock type is better

suited for alarms that are dependent on current locale.

Both types have a "wakeup" version, which says to wake up the device's CPU if the screen

is off. This ensures that the alarm will fire at the scheduled time. This is useful if your app

has a time dependency for example, if it has a limited window to perform a particular

operation. If you don't use the wakeup version of your alarm type, then all the repeating

alarms will fire when your device is next awake.

If you simply need your alarm to fire at a particular interval (for example, every half

hour), use one of the elapsed real time types. In general, this is the better choice.

If you need your alarm to fire at a particular time of day, then choose one of the clock-

based real time clock types. Note, however, that this approach can have some drawbacks

the app may not translate well to other locales, and if the user changes the device's time

setting, it could cause unexpected behavior in your app. Using a real time clock alarm

type also does not scale well, as discussed above. We recommend that you use a "elapsed

real time" alarm if you can.

There are four alarm types available. Your selection will determine if the time value

passed in the set method represents a specific time or an elapsed wait:

 RTC_WAKEUP Wakes up the device to fire the Intent at the clock time

specified when setting the Alarm.

 RTC Will fire the Intent at an explicit time, but will not wake the device.

 ELAPSED_REALTIME The Intent will be fired based on the amount of

time elapsed since the device was booted, but will not wake the device.

The elapsed time includes any period of time the device was asleep. Note

that the time elapsed is since it was last booted.

 ELAPSED_REALTIME_WAKEUP Will wake up the device if necessary

and fire the Intent after a specified length of time has passed since the

device was booted.

Android Telephony

The telephony APIs let your applications access the underlying telephone hardware,

making it possible to create your own dialer or integrate call handling and phone state

monitoring into your applications.

Making Phone Calls

The best practice is to use Intents to launch a dialer application to initiate new phone

calls. There aretwo Intent actions you can use to dial a number; in both cases, you

should specify the number to dial using the tel: schema as the data component of the

Intent:

 Intent.ACTION_CALL Automatically initiates the call, displaying the in-call

application. You

should only use this action if you are replacing the native dialer, otherwise you should

use the ACTION_DIAL action as described below. Your application must have the

CALL_PHONE permission granted to broadcast this action.

 Intent.ACTION_DIAL Rather than dial the number immediately, this action

starts a dialer

application, passing in the specified number but allowing the dialer application to

manage the call initialization (the default dialer asks the user to explicitly initiate the

call). This action doesn’t require any permissions and is the standard way applications

should initiate calls.

The following skeleton code shows the basic technique for dialing a number:

Intent intent = new Intent(Intent.ACTION_DIAL, Uri.parse(“tel:1234567”));

startActivity(intent);

Monitoring Phone Calls

One of the most popular reasons for monitoring phone state changes is to detect, and

react to, incoming and outgoing phone calls.

Calls can be detected through changes in the phone’s call state. Override the

onCallState Changed method in a Phone State Listener implementation, and register it

as shown below to receive notifications when the call state changes:

PhoneStateListener callStateListener = new PhoneStateListener() {

public void onCallStateChanged(int state, String incomingNumber) {

// TODO React to incoming call.

}

};

telephonyManager.listen(callStateListener,

PhoneStateListener.LISTEN_CALL_STATE);

The onCallStateChanged handler receives the phone number associated with incoming

calls, and the state parameter represents the current call state as one of the following

three values:

 TelephonyManager.CALL_STATE_IDLE When the phone is neither

ringing nor in a call

 TelephonyManager.CALL_STATE_RINGING When the phone is ringing

 TelephonyManager.CALL_STATE_OFFHOOK If the phone is currently

on a call

Tracking Cell Location Changes

You can get notifications whenever the current cell location changes by overriding

onCellLocationChanged on a Phone State Listener implementation. Before you can

register to listen for cell location changes, you need to add the

ACCESS_COARSE_LOCATION permission to your

application manifest.

<uses-permission

android:name=”android.permission.ACCESS_COARSE_LOCATION”/>

The onCellLocationChanged handler receives a CellLocation object that includes

methods for extracting the cell ID (getCid) and the current LAC (getLac).

The following code snippet shows how to implement a Phone State Listener to monitor

cell location changes, displaying a Toast that includes the new location’s cell ID:

PhoneStateListener cellLocationListener = new PhoneStateListener()

{

public void onCellLocationChanged(CellLocation location)

{

GsmCellLocation gsmLocation = (GsmCellLocation)location;

Toast.makeText(getApplicationContext()),

String.valueOf(gsmLocation.getCid()),

Toast.LENGTH_LONG).show();

}

};

telephonyManager.listen(cellLocationListener,

PhoneStateListener.LISTEN_CELL_LOCATION);

Tracking Service Changes

The onServiceStateChanged handler tracks the service details for the device’s cell

service. Use the ServiceState parameter to find details of the current service state.

The getState method on the Service State object returns the current service state as one

of:

 ServiceState.STATE_IN_SERVICE Normal phone service is available.

 ServiceState.STATE_EMERGENCY_ONLY Phone service is available but only for

emergency calls.

 ServiceState.STATE_OUT_OF_SERVICE No cell phone service is currently

available.

 ServiceState.STATE_POWER_OFF The phone radio is turned off (usually when

airplane mode is enabled).

A series of getOperator* methods is available to retrieve details on the operator

supplying the cell phone service, while getRoaming tells you if the device is currently

using a roaming profile.

The following example shows how to register for service state changes and displays a

Toast showing the operator name of the current phone service:

PhoneStateListener serviceStateListener = new PhoneStateListener()

{

public void onServiceStateChanged(ServiceState serviceState)

 {

if (serviceState.getState() == ServiceState.STATE_IN_SERVICE)

 {

String toastText = serviceState.getOperatorAlphaLong();

Toast.makeText(getApplicationContext(), toastText, Toast.LENGTH_SHORT);

}

}

};

telephonyManager.listen(serviceStateListener,

PhoneStateListener.LISTEN_SERVICE_STATE);

Multimedia

The only modern technology that can compete with mobile phones for ubiquity is the

portable digital

Media player. As a result, the multimedia capabilities of portable devices are a

significant consideration for many consumers.

Android’s open platform- and provider-agnostic philosophy ensures that it offers a

multimedia library capable of playing and recording a wide range of media formats,

both locally and streamed.

Android exposes this library to your applications, providing comprehensive

multimedia functionality including recording and playback of audio, video, and still-

image media stored locally, within an application, or streamed over a data connection.

At the time of print, Android supported the following multimedia formats:

 JPEG

 PNG

 OGG

 Mpeg 4

 3GP

 MP3

 Bitmap

Playing Media Resources

Multimedia playback in Android is handled by the MediaPlayer class. You can play

back media stored as application resources, local files, or from a network URI.

To play a media resource, create a new Media Player instance, and assign it a media

source to play using the setDataSource method. Before you can start playback, you

need to call prepare, as shown in the following code snippet:

String MEDIA_FILE_PATH = Settings.System.DEFAULT_RINGTONE_URI.toString();

MediaPlayer mpFile = new MediaPlayer();

try {

mpFile.setDataSource(MEDIA_FILE_PATH);

mpFile.prepare();

mpFile.start();

}

catch (IllegalArgumentException e) {}

catch (IllegalStateException e) {}

catch (IOException e) {}

Alternatively, the static create methods work as shortcuts, accepting media resources as

a parameter and preparing them for playback, as shown in the following example,

which plays back an application resource:

MediaPlayer mpRes = MediaPlayer.create(context, R.raw.my_sound);

Note that if you use a create method to generate your MediaPlayer object, prepare is

called for you. Once a Media Player is prepared, call start as shown below to begin

playback of the associated media resource.

mpRes.start();

mpFile.start();

The Android Emulator simulates audio playback using the audio output of your development

platform.

The Media Player includes stop, pause, and seek methods to control playback, as well

as methods to find the duration, position, and image size of the associated media.

To loop or repeat playback, use the setLooping method. When playing video resources,

getFrame will take a screen grab of video media at the specified frame and return a bitmap

resource.

Once you’ve finished with the Media Player, be sure to call release to free the associated

resources, as shown below:

mpRes.release();

mpFile.release();

Since Android only supports a limited number of simultaneous Media Player objects,

not releasing them can cause runtime exceptions.

Using the Camera

The popularity of digital cameras (particularly within phone handsets) has caused their

prices to drop just as their size has shrunk dramatically. It’s now becoming difficult to

even find a mobile phone without a camera, and Android devices are unlikely to be

exceptions.

To access the camera hardware, you need to add the CAMERA permission to your

application manifest, as shown here:

<uses-permission android:name=”android.permission.CAMERA”/>

This grants access to the Camera Service. The Camera class lets you adjust camera

settings, take pictures, and manipulate streaming camera previews.

To access the Camera Service, use the static open method on the Camera class. When

your application has finished with the camera, remember to relinquish your hold on the

Service by calling release following the simple use pattern shown in the code snippet

below:

Camera camera = Camera.open();

[… Do things with the camera …]

camera.release();

Memory Management

Memory is an important resource for any computing system. Furthermore, when

considering programming mobile devices memory is a critical resource, because in an

attempt to keep the cost of the device low, manufacturers include only a restricted

amount of it in devices although all the running programs are competing for it. Moreover,

in addition to forming a considerable cost factor, memory chips also consume some

power, the amount of which depends on the amount of memory included in the device.

While the stack and the heap are in principle just memory areas. Additional

considerations should be paid to the fact that when using the heap, sharing of data is easy

and natural, whereas with stack-based variables one should use references with care, if

at all, because as the execution proceeds the stack increases and decreases, and may

overwrite referred data.

Stack

As a rule of thumb, transient objects, i.e., those that live only a limited period of time, are
to be stored in the stack. The idea is that if an object lives a short period of time in any
case, it is easier to allocate it in stack, because the object will be deallocated automatically
as the execution advances. Furthermore, using stack memory is usually already reserved,
and searching for a suitable memory area need not be performed upon allocation. This
issue further advocates the use of stack for transient objects.
On the downside, automatic allocation and deallocation of variables creates a potential
problem for using references to variables in the stack, as the variables can be erased and
replaced by some other variables. Assuming that references are always made from later
activations, this can never cause a problem. In practice, however, ensuring this in design
and in particular in the maintenance phase can turn out to be hard.

Heap

All data structures whose size or structure can be altered dynamically must be allocated
to the heap. The rationale is that since their size cannot be known in advance, it is
impossible to reserve enough space from the stack. Another reason that sometimes leads
to using the heap rather than the stack is that the object must live despite the phase of the
program. In other words, if the role of an object is global, then memory for it should be
allocated from heap.

As already discussed, inside methods such variables can be declared static, which
essentially make them global. Moreover, if large objects are to be allocated, they can be
allocated to the heap to avoid exhausting the stack, whose size can be limited for a
program. If there is no automation regarding garbage collection in the run-time system,
it is a responsibility of the caller of this function to ensure that memory is released when
the data structure is no longer needed. At the same time, it is a good practice to reset the

reference to the area, so that it will not be accidentally used. It is also important to
remember that using the heap can be slower than using the stack, as the running program
may have to search for a suitable memory area.

Stack Heap

Stack is used for static memory allocation Heap for dynamic memory allocation

stored in the computer's RAM stored in the computer's RAM

Variables allocated on the stack are stored
directly to the memory and access to this
memory is very fast, and it's allocation is
dealt with when the program is compiled

Variable allocation is fast on stack

Variables allocated on the heap have their
memory allocated at run time and
accessing this memory is a bit slower

Variable allocation is heap it’s slow.

The stack is always reserved in a LIFO
order

Element of the heap have no
dependencies with each other and can
always be accessed randomly at any time.

You can use the stack if you know exactly
how much data you need to allocate
before compile time and it is not too big

You can use heap if you don't know
exactly how much data you will need at
runtime or if you need to allocate a lot of
data.

Stack is a linear data structure Heap is a nonlinear data structure.

Design Patterns for Limited Memory

When composing designs for devices with a limited amount of memory, the most
important principle is not to waste memory.

Here, we focus on their application in the design of programs running in mobile devices.

Linear Data Structures

The principal rule is to favor linear data structures. Linear data structures are generally
better for memory management than non-linear ones for several reasons, as listed in the
following:

• Less fragmentation. Linear data structures occupy memory place from one location,
whereas non-linear ones can be located in different places. Obviously, the former results
in less possibility for fragmentation.
• Less searching overhead. Reserving a linear block of memory for several items only
takes one search for a suitable memory element in the run-time environment, whereas
non-linear structures require one request for memory per allocated element. Combined

with a design where one object allocates a number of child objects, this may also lead to
a serious performance problem.
• Design-time management. Linear blocks are easier to manage at design time, as fewer
reservations are made. This usually leads to cleaner designs.
• Monitoring. Addressing can be performed in a monitored fashion, because it is possible
to check that the used index refers to a legal object.
• Cache improvement. When using linear data structures, it is more likely that the next
data element is already in cache, as cache works internally with blocks of memory. A
related issue is that most caches expect that data structures are used in increasing order
of used memory locations. Therefore, it is beneficial to reflect this in designs where
applicable.
• Index uses less memory. An absolute reference to an object usually consumes 32 bits,
whereas by allocating objects to a vector of 256 objects, assuming that this is the upper
limit of objects, an index of only 8 bits can be used. Furthermore, it is possible to check
that there will be no invalid indexing.

Basic Design Decisions

In the following, we introduce some basic principles helping in using linear data
structures. The purpose is not to introduce a complete checklist, but rather offer
some examples on how linear data structures can be benefited from when composing
designs.

Allocate all memory at the beginning of a program. This ensures that the application
always has all the memory it needs, and memory allocation can only fail at the beginning
of the program. Reserving all the resources is particularly attractive when the most
important or mandatory features like emergency calls, for instance, are considered, for
which resources must always be available. In general, this type of an approach is best
suited for devices that have been optimized for one purpose, and it cannot be generally
applied in smartphones except only in some restricted special cases.

Allocate memory for several items, even if you only need one. Then, one can build a
policy where a number of objects is reserved with one allocation request. These objects
can then be used later when needed. This reduces the number of allocation requests,
which leads to a less complex structure in the memory. The approach also improves
performance, as there will be fewer memory allocations, and cache use is improved.

Use standard allocation sizes. With a standard allocation size, it is easy to reuse a
deallocated area in the memory when the next reservation is made. As a result,
fragmentation of memory can be prevented, at least to some extent.

Reuse objects. Reusing old objects might require using a pool of free objects. This
requires some data structure for managing free and used data structures. This implies

that the programmer actively participates in the process of selecting object construction
and destruction policy in the design.

Release early, allocate late. By always deallocating as soon as possible the programmer
can give more options for memory management, because new objects can be allocated to
the area that has just been released as well. In contrast, by allocating memory as late as
possible, the developer can ensure that all possible deallocations have been performed
before the allocation. In particular, one should ensure that objects occupying a large
amount of memory are deallocated before allocating new objects. The reason is that in
many implementations, heap gives the first suitable memory area, or, in a stack-like
implementation, on one end. Then, when large objects are deallocated before allocating
others, fragmentation can potentially be prevented, or at very least its effect can be
lessened.

Use permanent storage or ROM when applicable. In many situations, it is not even
desirable to keep all the data structures in the program memory due to physical
restrictions. For instance, in a case when the battery is removed from the device, all
unsaved data will be lost. For such situations, it is advisable to introduce the custom to
save all data to permanent storage as soon as possible. This can be eased with a user
interface that forces the user to commit to completing an entry to calendar or contacts, for
instance. A similar fashion can be derived for static data, such as dynamic library and
application identifiers or strings used in applications. Furthermore, even if there is no
risk of losing data, it may be beneficial from the memory consumption point of view to
write large, seldom used objects to permanent storage, so that the device’s memory is
preserved for more important data.

DYNAMIC LINK LIBRARIES

The terms EXE and DLL are very common in programming. When coding, you can either

export your final project to either a DLL or an EXE. The term EXE is a shortened version
of the word executable as it identifies the file as a program. On the other hand, DLL stands
for Dynamic Link Library, which commonly contains functions and procedures that

can be used by other programs.

In the basest application package, you would find at least a single EXE file that may or
may not be accompanied with one or more DLL files. An EXE file contains the entry
point or the part in the code where the operating system is supposed to begin the
execution of the application. DLL files do not have this entry point and cannot be
executed on their own.

The most major advantage of DLL files is in its reusability. A DLL file can be used in other
applications as long as the coder knows the names and parameters of the functions and
procedures in the DLL file. Because of this capability, DLL files are ideal for distributing

device drivers. The DLL would facilitate the communication between the hardware and
the application that wishes to use it. The application would not need to know the
intricacies of accessing the hardware just as long as it is capable of calling the functions
on the DLL.

Launching an EXE would mean creating a process for it to run on and a memory space.
This is necessary in order for the program to run properly. Since a DLL is not launched
by itself and is called by another application, it does not have its own memory space
and process. It simply shares the process and memory space of the application that is

calling it. Because of this, a DLL might have limited access to resources as it might be
taken up by the application itself or by other DLLs.

A DLL file, short for Dynamic Link Library, is a type of file that contains instructions that other programs

can call upon to do certain things. This way, multiple programs can share the abilities programmed into a

single file, and even do so simultaneously.

Static and Dynamic DLLs

• Static DLL
– (Commonly) Instantiated at application startup
– Resides in the memory until the application terminates

• Dynamic DLL (plugin)
– Loaded and unloaded whenever needed
– E.g. different plugin for different messaging types (email/SMS/MMS)

Plug-in
In computing, a plug-in (or plugin, add-in, addin, add-on, addon, or extension) is

a software component that adds a specific feature to an existing computer program.

No. .Exe .DLL

1 .EXE is Executable File DLL is Dynamic Link Library

2 .exe is run individually .dll can't run individually

3 .exe Has Main Function .dll doesn't contain Main Function

4 Mainly is for standalone application .dll give support to exe

5 Only one .exe file exists per
application.

Many .dll files may exist in one
application.

6 Exe cannot be shared with other
applications

.dll can be shared with other applications

7 Exe is for single use whereas you
can use Dll for multiple use

A DLL file can be reused by other
applications while an EXE cannot

8 EXE is an Out-Process Component. Dll is an In-Process Component

Rules of Thumb for Using Dynamically Loaded Libraries

 Reusable or shareable components should be implemented using dynamically
loaded libraries, as otherwise all the applications that use the components must
contain them separately. This in turn consumes memory. In addition, sharing can
take place in a form where the same model, implemented as a dynamically loaded
library, is reused in several different devices that require a specialized user
interface for each device.

 Variation or management point can be preferable to implement in terms of

dynamic libraries. This makes variation or management more controlled, as it can
be directly associated with a software component. Moreover, the library can be
easily changed, if updates or modifications are needed.

 Software development processes such as automated testing may require that all

the input is in a form that can be directly processed. Then, performing the tests
may require that binary components are delivered.

 Organizational unit can be authorized to compose a single library that is

responsible for a certain set of functions. Requesting a library then results in a
separate deliverable that can be directly integrated into the final system.

What Constitutes an Application?

The most basic definition of an application is that it is a piece of software that can be
started and terminated individually, and that it performs a certain task. Furthermore, it
is often necessary to associate a user interface with an application, as otherwise observing
the behavior of the application might be difficult.

In the technical sense, an application can be taken as a piece of executable code that can
be triggered to execution by the user or the system under some special conditions.

Workflow for Application Development

Perhaps the most important design concern in the design of an application running in a mobile
device is the consistency of user experience. Actions must be simple and single yet focused,
and they must be accomplished with ease and using only a minimal number of
keystrokes. This has an obvious effect on the way in which applications must be
designed.

A common workflow for the development of applications for the mobile setting, with
special focus on usability and user activities, has been defined by Salmre (2005),
consisting of:

1. Scoping
2. Performance considerations
3. User interface design
4. Data Model and Memory Concerns, and
5. Communications and I/O.

In the following, we summarize this workflow.

Scoping

Before starting the design of an application for the mobile setting, one must have the
fundamental purpose of the application, including both what the application can do
and what it cannot. In particular, when implementing a mobile version of a desktop
application, a subset of functions must be selected that will be included in the
implementation.
Furthermore, the physical characteristics of the device must be taken into account, if
they imply restrictions.
Scoping can be helped by conceptualizing (idea) the application with pictures,
mockups (model), and creating prototypes. This will also help when communicating
the scope and the purpose of the application to other developers. One should also

consider the relative importance of the functions to users. For instance, if clock times
are rarely entered, it may be enough to use a somewhat inconvenient user interface;
while the operation may be annoying, it is needed so seldom that the user can still
execute it. However, for entries that are frequent, a well-considered user interface
should be implemented.

Performance Considerations

When scoping has been completed, the next step is to consider performance. To begin
with, general responsiveness metrics are needed for applications. This includes, for
instance, defining how fast it should be to open a menu in the application. The overall
responsiveness is an important part of the user experience. In addition to generic
responsiveness, specific metrics should be created for the most important scenarios. This
forces the application designer to consider the chains of events that allow the user to carry
out certain procedures.

One way to design for performance is to use an older (or simply less capable) hardware
for early experiments. While this gives a pessimistic view on the possibilities of
implementing the application, the design can be initiated before the actual target device

is available, and with lesser assumptions, it is more likely that the users will be satisfied
with the performance.

All assumptions should be tested with a real implementation. A commonly used
approach is to start with some key features and their performance, and to continue to
less important features only when the key features have an acceptable level of
performance. Taking into account that in the future more will be expected of the
application is usually a good rule of thumb. In particular, an idea where the code is first
completed in full in order to determine the worst bottlenecks is usually flawed, because
the overall performance is often the most important aspect. Then, data structures, their
layout in memory, used algorithms, and the way the user interface is constructed are
issues that should be considered first, not individual lines of code. In other words, root
causes of performance problems should be focused on instead of their symptoms.

One should also consider that overly focusing on performance can be harmful for
portability. Therefore, while it is important to consider that the selected implementation
principles are able to satisfy performance requirements, one should not be bound to
optimize the development solely for performance. Rather, a reality check on what can be
realistically accomplished is to be performed.

User Interface Design

As already discussed, before advancing to the technical design of a mobile application, it
is important to study key use cases and features that characterize the application. If the
performance provided by the prototype implementation is good enough in studies, it
is time to focus on the right user interface.
Besides scoping and innovations, one can consider end-user productivity and
responsiveness as the most important principles of user interface design. The former
means that the actions that are typical and natural for the end-user can be easily and
rapidly carried out. The latter means that the user has the feeling of being in control while
performing the activities, which commonly implies minimizing the time the user has to
wait for activities to complete, and even more importantly, the user is never left
wondering what the device is actually doing. The design is further hardened by the
tendency of users to perform repeated actions if no response is observed immediately.
This encourages designs where feedback on user-initiated operations is given, even if the
actual operation is still in progress behind the scenes. This may require a strategy where
the user is tricked into believing that an already completed task takes place only on her
command in a proactive fashion (for instance, some application can be always active even
if the user has never started it), or that the device lets the user believe the task is completed
while it in fact is not (for example, the phone claims to be ready after a reboot even if it
has not yet loaded contacts from SIM).

Moreover, in some cases one has to design an enforced flow of control, but at the same
time avoid the user becoming frustrated. A further challenge is to keep the user aware of
what has really been saved to disk, if the user wishes to turn off the device. Of particular
importance in designing the user interface are the available facilities. It is not realistic to
copy the user interface greeted in one type of device to another type of device, and expect
that usability and user experience will be preserved. Instead, one should consider what
seems natural to the user when a certain type of device is available and use that as the
starting point of user interface design.
The situation is worsened by the fact that different actions are natural with different
devices. For instance, it seems completely realistic to edit Excel macros when using a
Communicator type of device, but being able to read the figures might be enough in a
normal mobile phone where more restricted resources are available. In general, the
design is of course influenced by the size of the screen as well as the restricted input
mechanisms. To some extent, this can be solved by using PCs for some of the tasks, and
only transferring the outcome to a mobile device. In addition, one can consider whether
to aim at special-purpose devices and applications or to a single tool that does everything.
One view to this problem is provided by Norman (1998), where an application- and
purpose-specific approach is considered to lead to simpler use than a multipurpose
approach. In practice, however, it seems that also the latter approach is constantly gaining
interest, at least when considering available devices. One contributing factor to this is the
cost of manufacturing. New hardware features can be cheaper when they are integrated
in a cell phone rather than implementing them in a separate device. Moreover, software
features can be virtually free.

Data Model and Memory Concerns

As already discussed, mobile devices offer rather restricted facilities for application
development. This is related to unit price of devices, where more sophisticated hardware
leads to an increasing price per device, but also power consumption and the size of the
device imply certain restrictions. The outcome can be a device where several handicaps
exist, but the assumed use cases can be implemented with ease.
The way in which data is represented has an impact on how it can be located in the
memory, on how the system behaves in peak conditions, and on how the application
disposes data. For an application developer, this implies that data structures and memory
use in general must be carefully considered. Also dynamically loaded libraries can be
considered as an issue that is closely related to data model and memory concerns, as their
technical implementation can rely on DLLs.

Communications and I/O

The way communications and I/O are defined determines how the application
communicates with the resources that are located beyond its control. This includes

devices’ internal resources, such as files and subsystems, as well as resources that are
external to the device, and require a communications mechanism before an access.

For instance, the latter includes socket-based communications, files on servers, Web
Services, and remote databases, to name some options. The way in which the application
handles local and remote resources has a major effect on usability. Accessing local
resources is usually fast, whereas communicating with remote resources is slow, at least
with the current implementation techniques.
A decision to load some data from a remote location in anticipation of the user’s actions
can in some cases result in major improvements in user experience. However, in general
this is impossible, and should only be carried out in special cases, where users’
intentions can be accurately modeled in advance.

Another important aspect to consider with communications and I/O is the level of
abstraction of transmitted and stored data. For example, one can consider the following
levels of abstraction in using files:

1. binary streams, where the data is stored in a fashion that is unreadable without auxiliary
software,
2. text streams, where data becomes more readable, but may still remain somewhat unstructured
and unreadable for a human reader
3. XML forward-only readers and writers, where more meta-information is included
4. XML Document Object Model, where complex automatic processing of included data is
usually enabled.

The different levels of abstraction offer different facilities for manipulating data.

The more abstract the level, the easier it is to process the data and the more self contained
the files are. This implies that developers’ productivity improves, as programming,
debugging, and maintenance will be easier, and it is more likely that potentially available
standard components can be used, or reuse options exist within the company. However,
at the same time the amount of overhead in transmitting, processing, and storing
increases, which means that the approach may not be suited for cases where a large
amount of data must be processed in a short period of time. This can lead to contradicting
requirements in application development that complicate the design. The design is made
more difficult by the fact that it is seldom a practical way to include several
implementations of the same feature in the device, even if their characteristics would be
different. In addition, costs associated with the connection may become an important
factor if a cellular data connection is assumed.
 For instance, one may wish to download as much data as possible when wireless LAN
connection is available, but accept only minimal connectivity when using GPRS.

Unit – V

IEEE 802.11 WLAN

The IEEE (Institute of Electrical and Electronics Engineers) describes itself as "the world's

largest technical professional society -- promoting the development and application of

electro technology and allied sciences for the benefit of humanity, the advancement of

the profession, and the well-being of our members."

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications

for implementing wireless local area network (WLAN) computer communication in the

900 MHz and 2.4, 3.6, 5, and 60 GHz frequency bands. They are created and maintained

by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards

Committee (IEEE 802).

WiFi stands for Wireless Fidelity. WiFi It is based on the IEEE 802.11 family of standards

and is primarily a local area networking (LAN) technology designed to provide in-

building broadband coverage.

Radio Signals

Radio Signals are the keys, which make WiFi

networking possible. These radio signals

transmitted from WiFi antennas are picked up by

WiFi receivers, such as computers and cell

phones that are equipped with WiFi cards.

Whenever, a computer receives any of the signals

within the range of a WiFi network, which is

usually 300 — 500 feet for antennas, the WiFi card

reads the signals and thus creates an internet

connection between the user and the network

without the use of a cord.

Access points, consisting of antennas and routers, are the main source that transmit and

receive radio waves. Antennas work stronger and have a longer radio transmission with

a radius of 300-500 feet, which are used in public areas while the weaker yet effective

router is more suitable for homes with a radio transmission of 100-150 feet.

WiFi Hotspots

A WiFi hotspot is created by installing an access point to an internet connection. The

access point transmits a wireless signal over a short distance. It typically covers around

300 feet. When a WiFi enabled device such as a Pocket PC encounters a hotspot, the device

can then connect to that network wirelessly.

Most hotspots are located in places that are readily accessible to the public such as

airports, coffee shops, hotels, book stores, and campus environments. 802.11b is the most

common specification for hotspots worldwide. The 802.11g standard is backwards

compatible with .11b but .11a uses a different frequency range and requires separate

hardware such as an a, a/g, or a/b/g adapter.

Some Hotspots require WEP key to connect, which is considered as private and secure.

As for open connections, anyone with a WiFi card can have access to that hotspot. So in

order to have internet access under WEP, the user must input the WEP key code.

There are two types of wireless networks:

The stations of the wireless network can communicate directly with each other, we called

Ad Hoc network type, or via relay terminals called APs (Access Points, PA) then it is an

infrastructure network. The second type is by far the most common in business.

 • Type networks Ad Hoc, where stations communicate directly.

 • Infrastructure type networks where stations communicate through access points.

There are several variations of WiFi. In short, 802.11b and 802.11g are compatible them

and both operate with the radio waves of a frequency of 2.4 GHz. The 802.11b reached a

speed of 11 Mb / s and 802.11g rises to 54 Mb / s. The 802.11a is not compatible with

802.11b and 802.11g, because it works with the waves a radio frequency of 5 GHz. It can

reach 54 Mb / s. The 802.11n allows to achieve a real flow rate greater than 100 Mb / s. It

is capable of operating at 2.4 GHz or 5 GHz and is compatible with the 802.11b / g and

802.11a. Unfortunately. Most 802.11n equipment available today use only tape 2.4 GHz

(and are therefore not compatible with the 802.11a). Today the WiFi version of the most

used is far 802.11g. It should be rapidly overtaken by 802.11n.

802.11 Architecture

The 802.11architecture defines two types of services and three different types of stations

802.11 Services

The two types of services are

1. Basic services set (BSS)
2. Extended Service Set (ESS)

 1. Basic Services Set (BSS)

 • The basic services set contain stationary or mobile wireless stations and a central base

station called access point (AP).

• The use of access point is optional.

• If the access point is not present, it is known as stand-alone network. Such a

BSS cannot send data to other BSSs. This type of architecture is known as adhoc

architecture.

• The BSS in which an access point is present is known as an infrastructure network.

2. Extend Service Set (ESS)

• An extended service set is created by joining two or more basic service sets (BSS) having

access points (APs).

• These extended networks are created by joining the access points of basic services sets

through a wired LAN known as distribution system.

• The distribution system can be any IEET LAN.

There are two types of stations in ESS:

(i) Mobile stations: These are normal stations inside a BSS.

(ii) Stationary stations: These are AP stations that are part of a wired LAN.

• Communication between two stations in two different BSS usually occurs via two APs.

• A mobile station can belong to more than one BSS at the same time.

802.11 Station Types

IEEE 802.11 defines three types of stations on the basis of their mobility in wireless LAN.

These are:

1. No-transition Mobility

2. BSS-transition Mobility

3. ESS-transition Mobility

1. No-transition .Mobility: These types of stations are either stationary i.e. immovable or

move only inside a BSS.

2. BSS-transition mobility: These types of stations can move from one BSS to another but

the movement is limited inside an ESS.

3. ESS-transition mobility: These types of stations can move from one ESS to another.

The communication mayor may not be continuous when a station moves from one ESS

to another ESS.

Table 7.5. 802.11 Wireless Standards

IEEE
Standard

Frequency/Medium Speed Topology Transmission
Range

Access
Method

802.11 2.4GHz RF 1 to
2Mbps

Ad
hoc/infrastructure

20 feet indoors. CSMA/CA

802.11a 5GHz Up to
54Mbps

Ad
hoc/infrastructure

25 to 75 feet
indoors; range can
be affected by
building materials.

CSMA/CA

802.11b 2.4GHz Up to
11Mbps

Ad
hoc/infrastructure

Up to 150 feet
indoors; range can
be affected by
building materials.

CSMA/CA

802.11g 2.4GHz Up to
54Mbps

Ad
hoc/infrastructure

Up to 150 feet
indoors; range can
be affected by
building materials.

CSMA/CA

802.11n 2.4GHz/5GHz Up to
600Mbps

Ad
hoc/infrastructure

175+ feet indoors;
range can be
affected by building
materials.

CSMA/CA

CSMA CA vs CSMA CD

Carrier Sense Multiple Access or CSMA is a Media Access Control (MAC) protocol that

is used to control the flow of data in a transmission media so that packets do not get lost

and data integrity is maintained. There are two modifications to CSMA, the CSMA CD

(Collision Detection) and CSMA CA (Collision Avoidance), each having its own

strengths.

CSMA operates by sensing the state of the medium in order to prevent or recover from a

collision. A collision happens when two transmitters transmit at the same time. The data

gets scrambled, and the receivers would not be able to discern one from the other thereby

causing the information to get lost. The lost information needs to be resent so that the

receiver will get it.

CSMA CD operates by detecting the occurrence of a collision. Once a collision is detected,

CSMA CD immediately terminates the transmission so that the transmitter does not have

to waste a lot of time in continuing. The last information can be retransmitted. In

comparison, CSMA CA does not deal with the recovery after a collision. What it does is

to check whether the medium is in use. If it is busy, then the transmitter waits until it is

idle before it starts transmitting. This effectively minimizes the possibility of collisions

and makes more efficient use of the medium.

Another difference between CSMA CD and CSMA CA is where they are typically used.

CSMA CD is used mostly in wired installations because it is possible to detect whether a

collision has occurred. With wireless installations, it is not possible for the transmitter to

detect whether a collision has occurred or not. That is why wireless installations often use

CSMA CA instead of CSMA CD.

CSMA/CA protocol is used in wireless networks because they cannot detect the collision

so the only solution is collision avoidance.

CSMA/CA avoids the collisions using three basic techniques.

(i) Interframe space (ii) Contention window (iii) Acknowledgements

1. Interframe Space (IFS)

• Whenever the channel is found idle, the station does not transmit immediately. It waits

for a period of time called interframe space (IFS).

• When channel is sensed to be idle, it may be possible that same distant station may

have already started transmitting and the signal of that distant station has not yet reached

other stations.

• Therefore the purpose of IFS time is to allow this transmitted signal to reach other

stations.

• If after this IFS time, the channel is still idle, the station can send, but it still needs to

wait a time equal to contention time.

• IFS variable can also be used to define the priority of a station or a frame.

2. Contention Window

• Contention window is an amount of time divided into slots.

• A station that is ready to send chooses a random number of slots as its wait time.

• The number of slots in the window changes according to the binary exponential back-

off strategy. It means that it is set of one slot the first time and then doubles each time the

station cannot detect an idle channel after the IFS time.

• This is very similar to the p-persistent method except that a random outcome defines

the number of slots taken by the waiting station.

• In contention window the station needs to sense the channel after each time slot.

• If the station finds the channel busy, it does not restart the process. It just stops the timer

& restarts it when the channel is sensed as idle.

3. Acknowledgement

• Despite all the precautions, collisions may occur and destroy the data.

• The positive acknowledgment and the time-out timer can help guarantee that receiver

has received the frame.

GSM

Cellular System Architecture

Cells: - A cell is the basic geographic unit of a cellular system. Shape of the areas into

which a coverage region is divided.

Cells are base stations transmitting over small geographic areas that are represented as

hexagons.

Each cell size varies depending on the landscape.

Because of constraints imposed by natural terrain and man-made structures

Clusters:- A cluster is a group of cells No channels are reused within a cluster.

Cellular Approach

With limited frequency resource, cellular principle can serve thousands of subscribers at

an affordable cost. In a cellular network, total area is subdivided into smaller areas called

“cells”. Each cell can cover a limited number of mobile subscribers within its boundaries.

Each cell can have a base station with a number of RF channels.

Frequencies used in a given cell area will be simultaneously reused at a different cell

which is geographically separated. For example, a typical seven-cell pattern can be

considered.

Total available frequency resources are divided into seven parts, each part consisting of

a number of radio channels and allocated to a cell site. In a group of 7 cells, available

frequency spectrum is consumed totally. The same seven sets of frequency can be used

after certain distance.

The group of cells where the available frequency spectrum is totally consumed is called

a cluster of cells.

Two cells having the same number in the adjacent cluster, use the same set of RF channels

and hence are termed as “Co-channel cells”. The distance between the cells using the

same frequency should be sufficient to keep the co-channel (co-chl) interference to an

acceptable level. Hence, the cellular systems are limited by Co-channel interference.

Hence a cellular principle enables the following.

• More efficient usage of available limited RF source.

• Manufacturing of every piece of subscriber's terminal within a region with the

same set of channels so that any mobile can be used anywhere within the region.

Shape of Cells

For analytical purposes a “Hexagon” cell is preferred to other shapes on paper due to the

following reasons.

• A hexagon layout requires fewer cells to cover a given area. Hence, it envisages

fewer base stations and minimum capital investment.

• Other geometrical shapes cannot effectively do this. For example, if circular

shaped cells are there, then there will be overlapping of cells.

• Also for a given area, among square, triangle and hexagon, radius of a hexagon

will be the maximum which is needed for weaker mobiles.

In reality cells are not hexagonal but irregular in shape, determined by factors like

propagation of radio waves over the terrain, obstacles, and other geographical

constraints. Complex computer programs are required to divide an area into cells. One

such program is “Tornado” from Siemens.

Cellular Hierarchy

Pico cell - (<10 meters)

A Pico cell is a small cellular base station typically covering a small area, such as in-

building (offices, shopping malls, train stations, stock exchanges, etc.), or more recently

in-aircraft. In cellular networks, Pico cells are typically used to extend coverage to indoor

areas where outdoor signals do not reach well, or to add network capacity in areas with

very dense phone usage, such as train stations or stadiums. Pico cells provide coverage

and capacity in areas difficult or expensive to reach using the more traditional macro cell

approach

Microcell (100-1000 meters)

A microcell is a cell in a mobile phone network served by a low power cellular base

station (tower), covering a limited area such as a mall, a hotel, or a transportation hub. A

microcell is usually larger than a Pico cell, though the distinction is not always clear. A

microcell uses power control to limit the radius of its coverage area.

Typically the range of a microcell is less than two kilometers wide, whereas standard base

stations may have ranges of up to 35 kilometers.

Macrocell (>1000 Meters)

Magacell (cells with global coverage)

Femtocell

In telecommunications, a femtocell is a small, low-power cellular base station, typically

designed for use in a home or small business. A broader term which is more widespread

in the industry is small cell, with femtocell as a subset. It is also called femto Access

Point(AP). It connects to the service provider’s network via broadband (such as DSL or

cable); current designs typically support four to eight simultaneously active mobile

phones in a residential setting depending on version number and femtocell hardware,

and eight to 16 mobile phones in enterprise settings. A femtocell allows service providers

to extend service coverage indoors or at the cell edge, especially where access would

otherwise be limited or unavailable. Although much attention is focused on WCDMA,

the concept is applicable to all standards, including GSM, CDMA2000, TD-SCDMA,

WiMAX and LTE solutions.

What is GSM?

If you are in Europe or Asia and using a mobile phone, then most probably you are using

GSM technology in your mobile phone.

• GSM stands for Global System for Mobile Communication. It is a digital cellular

technology used for transmitting mobile voice and data services.

• The concept of GSM emerged from a cell-based mobile radio system at Bell

Laboratories in the early 1970s.

• GSM is the name of a standardization group established in 1982 to create a

common European mobile telephone standard.

• GSM is the most widely accepted standard in telecommunications and it is

implemented globally.

• GSM is a circuit-switched system that divides each 200 kHz channel into eight 25

kHz time-slots. GSM operates on the mobile communication bands 900 MHz and

1800 MHz in most parts of the world. In the US, GSM operates in the bands 850

MHz and 1900 MHz.

• GSM owns a market share of more than 70 percent of the world's digital cellular

subscribers.

• GSM makes use of narrowband Time Division Multiple Access (TDMA) technique

for transmitting signals.

• GSM was developed using digital technology. It has an ability to carry 64 kbps to

120 Mbps of data rates.

• Presently GSM supports more than one billion mobile subscribers in more than

210 countries throughout the world.

• GSM provides basic to advanced voice and data services including roaming

service. Roaming is the ability to use your GSM phone number in another GSM

network.

Why GSM?

Listed below are the features of GSM that account for its popularity and wide acceptance.

• Improved spectrum efficiency
• International roaming
• Low-cost mobile sets and base stations (BSs)
• High-quality speech
• Compatibility with Integrated Services Digital Network (ISDN) and other

telephone company services
• Support for new services

General Features of GSM

GSM (Global System for Mobile Communications) is a second-generation (2G) digital

mobile telephones standard using a combination Time Division Multiple Access

(TDMA) and Frequency Division Multiple Access (FDMA) to share the bandwidth

among as many subscribers as possible.

1. GSM provides only 9.6 kbps data connection. Increase in data rates can be

achieved when GSM changes into a radio service based on wide band code

division multiple access, and not TDMA.

2. GSM digitizes and compresses voice data, then sends it down a channel with two

other streams of user data, each in its own time slot. It operates at either the 900,

1800 or 1,900 MHz frequency bands.

3. The uplink and down link frequencies for GSM are different and therefore a

channel has a pair of frequencies 80 MHz apart. The separation between uplink

and downlink frequencies is called duplex distance.

4. In a channel the separation between adjacent carrier frequencies is known as

channel separation which is 200 kHz in case of GSM.

5. The services supported by GSM are telephony, fax and SMS, call forwarding,

caller 10, call waiting and the like.

6. GSM supports data at rates up to 9.6 kbps on POTS (Plain Old Telephone

Service), ISDN, Packet Switched Public Data Networks, and Circuit Switched

Public Data Networks.

8. Being a digital system, GSM does not require a modem between subscriber and

GSM network.

GSM- Architecture

Global System for Mobile Communication

Main Entity (BSS-NSS-NMS/OSS)

BSS – Base station subsystem BTS – Base transceiver station & BSC –Base

Station Controller

NSS – Network station subsystem MSC-Mobile Switching Center,

HLR-Home Location Register, VLR-Visitor Location Register, EIR- Equipment Identity

Register (White, Grey & Black List users), AUC – Authentication Center, IN- Intelligent

Network, GMSC-Gateway MSC, SMSC-Short message service center

Air

U2U

 BSS NSS

 OMC – R OMCS

M

s

M

s

M

s

B

T

S

B

T

S

B

S

C

M

S

C

SMSC

HLR

VLR

EIR

AUC

IN

GMSC

P

S

T

N

NMS/ OSS

NMS – Network Management system OMC-R - Operation Maintenance

Center for Radio OMC-S - Operation Maintenance Center for Switch

OSS- Operation Station subsystem

PSTN – Public Switched Telephone Network

Base Transceiver Station

• BTS is a wireless transmission and receiving terminal.

• All mobile device connected with a nearest BTS.

• A group of BTS connected with a BSC

• Each BTS has a identification number in the network. Based on site and capacity

it can be separated to 3-6 cell. There is a antenna for each cell.

Base Station Controller

• BSC is a GSM node that controls one or more BTS in the network. BTS can be

connected using microwave or optical fiber.

• BSC connected with MSC for voice and signal communication. For data

communication its connected with SGSN

• Mobile device handover intelligence between BTS which is called BTS handover

and call setup controlled by BSC.

• Radio network management including radio frequency controlled by BSC

Mobile Switching Center

• MSC is the sub center of large network or center of small network (GSM Core

Network)

• MSC is related with switching, call setup, release.

• MSC control a group of BSC

• In large GSM network MSC connected with STP for signal routing and MGW for

Voice switching.

Home Location Register

• HLR is a central database contains mobile subscriber’s details information which

is used for core network. Every subscriber should be identified with

IMSI/MSISDN pair and uniquely associated with one HLR

Visitor Location Register

• VLR is a subscriber database having subscriber’s details information. VLR

response will be faster than HLR, VLR store some additional information for

which HLR need to communicate with voice network or radio network.

Equipment Identity Register

• EIR is a central database, which contains subscriber’s handset IMEI. If network

configured for check in EIR, then for any subscriber if the IMEI is enlisted in EIR,

the mobile device will not be able to use in the network.

• EIR can be used to prevent stolen or unauthorized mobile device use

Short Message Service Center

• SMSC is a node that deliver SMS to subscriber. Any SMS either from subscriber

to subscriber or application to subscriber must be sent via a SMSC.

• Every subscriber SIM store a service center number where the subscriber

initiated SMS send.

• SMSC communicate with HLR for subscriber location and VLR for delivering the

SMS

OSS

• The OSS (Operational Support Systems) supports operation and maintenance of

the system and allows engineers to monitor, diagnose, and troubleshoot every

aspect of the GSM network.

GSM Interfaces

The air interface between the MS and the BTS is called Um. The GSM air interface is

based on time division multiple access (TDMA) with frequency division duplex (FDD).

TDMA allows multiple users to share a common RF channel on a time-sharing basis,

while FDD enables different frequencies to be used in uplink (MS to BTS) and downlink

(BTS to MS) directions.

1. Um interface The "air" or radio

interface standard that is used for

exchanges between a mobile (ME)

and a base station (BTS / BSC). For

signalling, a modified version of the

ISDN LAPD, known as LAPDm is

used.

2. Abis interface This is a BSS

internal interface linking the BSC

and a BTS, and it has not been

totally standardised. The Abis

interface allows control of the radio

equipment and radio frequency

allocation in the BTS.

3. A interface The A interface is

used to provide communication

between the BSS and the MSC. The

interface carries information to

enable the channels, timeslots and

the like to be allocated to the mobile

equipments being serviced by the

BSSs. The messaging required

within the network to enable handover etc to be undertaken is carried over the

interface.

4. B interface The B interface exists between the MSC and the VLR . It uses a protocol

known as the MAP/B protocol. As most VLRs are collocated with an MSC, this

makes the interface purely an "internal" interface. The interface is used whenever

the MSC needs access to data regarding a MS located in its area.

5. C interface The C interface is located between the HLR and a GMSC or a SMS-G.

When a call originates from outside the network, i.e. from the PSTN or another

mobile network it ahs to pass through the gateway so that routing information

required to complete the call may be gained. The protocol used for communication

is MAP/C, the letter "C" indicating that the protocol is used for the "C" interface.

In addition to this, the MSC may optionally forward billing information to the

HLR after the call is completed and cleared down.

GSM interface Description with position

Um
It is the air interface used between MS and

BTS. Also referred as Air interface.

A It is used between BSC and MSC.

Abis It is used between BTS and BSC.

B It is used between MSC and VLR.

C
It is used between HLR and GMSC. Also

between MSC and HLR.

D It is used between HLR and VLR.

E
It is used between MSC and another MSC

or G-MSC.

F
It is used between EIR and MSC and

between EIR and G-MSC.

G It is used between VLR and another VLR.

6. D interface The D interface is situated between the VLR and HLR. It uses the

MAP/D protocol to exchange the data related to the location of the ME and to the

management of the subscriber.

7. E interface The E interface provides communication between two MSCs. The E

interface exchanges data related to handover between the anchor and relay MSCs

using the MAP/E protocol.

8. F interface The F interface is used between an MSC and EIR. It uses the MAP/F

protocol. The communications along this interface are used to confirm the status

of the IMEI of the ME gaining access to the network.

9. G interface The G interface interconnects two VLRs of different MSCs and uses

the MAP/G protocol to transfer subscriber information, during e.g. a location

update procedure.

10. H interface The H interface exists between the MSC the SMS-G. It transfers short

messages and uses the MAP/H protocol.

11. I interface The I interface can be found between the MSC and the ME. Messages

exchanged over the I interface are relayed transparently through the BSS.

GSM Services

GSM offers much more than just voice telephony. Contact your local GSM network

operator to the specific services that you can avail.

GSM offers three basic types of services:

• Telephony services or teleservices

• Data services or bearer services

• Supplementary services

Teleservices

The abilities of a Bearer Service are used by a Teleservice to transport data. These

services are further transited in the following ways:

Voice Calls

The most basic Teleservice supported by GSM is telephony. This includes full-rate

speech at 13 kbps and emergency calls, where the nearest emergency-service provider is

notified by dialing three digits.

Short Text Messages

Short Messaging Service (SMS) service is a text messaging service that allows sending

and receiving text messages on your GSM mobile phone. In addition to simple text

messages, other text data including news, sports, financial, language, and location-

based data can also be transmitted.

Bearer Services

Data services or Bearer Services are used through a GSM phone. to receive and send

data is the essential building block leading to widespread mobile Internet access and

mobile data transfer. GSM currently has a data transfer rate of 9.6k. New developments

that will push up data transfer rates for GSM users are HSCSD (high speed circuit

switched data) and GPRS (general packet radio service) are now available.

Supplementary Services

Supplementary services are additional services that are provided in addition to

teleservices and bearer services. These services include caller identification, call

forwarding, call waiting, multi-party conversations, and barring of outgoing

(international) calls, among others. A brief description of supplementary services is

given here:

• Conferencing : It allows a mobile subscriber to establish a multiparty

conversation, i.e., a simultaneous conversation between three or more

subscribers to setup a conference call. This service is only applicable to normal

telephony.

• Call Waiting : This service notifies a mobile subscriber of an incoming call

during a conversation. The subscriber can answer, reject, or ignore the incoming

call.

• Call Hold : This service allows a subscriber to put an incoming call on hold and

resume after a while. The call hold service is applicable to normal telephony.

• Call Forwarding : Call Forwarding is used to divert calls from the original

recipient to another number. It is normally set up by the subscriber himself. It

can be used by the subscriber to divert calls from the Mobile Station when the

subscriber is not available, and so to ensure that calls are not lost.

• Call Barring : Call Barring is useful to restrict certain types of outgoing calls such

as ISD or stop incoming calls from undesired numbers. Call barring is a flexible

service that enables the subscriber to conditionally bar calls.

• Number Identification : There are following supplementary services related to

number identification:

o Calling Line Identification Presentation : This service displays the

telephone number of the calling party on your screen.

o Calling Line Identification Restriction : A person not wishing their

number to be presented to others subscribes to this service.

o Connected Line Identification Presentation : This service is provided to

give the calling party the telephone number of the person to whom they

are connected. This service is useful in situations such as forwarding's

where the number connected is not the number dialled.

o Connected Line Identification Restriction : There are times when the

person called does not wish to have their number presented and so they

would subscribe to this person. Normally, this overrides the presentation

service.

o Malicious Call Identification : The malicious call identification service

was provided to combat the spread of obscene or annoying calls. The

victim should subscribe to this service, and then they could cause known

malicious calls to be identified in the GSM network, using a simple

command.

• Advice of Charge (AoC) : This service was designed to give the subscriber an

indication of the cost of the services as they are used. Furthermore, those service

providers who wish to offer rental services to subscribers without their own SIM

can also utilize this service in a slightly different form. AoC for data calls is

provided on the basis of time measurements.

• Closed User Groups (CUGs) : This service is meant for groups of subscribers

who wish to call only each other and no one else.

• Unstructured supplementary services data (USSD) : This allows operator-

defined individual services.

Why cell splitting and sectoring?

As users increases channel capacity decreases. Techniques are needed to provide extra

channels.

Cell splitting and sectoring increases capacity.

Cell Splitting

Cell splitting is the process of subdividing a congested

cell into smaller cells such that each smaller cell has its

own base station with reduced antenna height and

reduced transmitter power. It increases the capacity of

a cellular system since number of times channels are

reused increases.

Advantages: Reduce the reuse distance between the cells. Use small antenna and they

transmit less power as compare to the larger.

Limitations: Handoffs are more frequent. Channel assignments become difficult. All cells

are not split simultaneously so special care have to be taken for proper allocation of

problem.

Cell sectoring: To overcome some limitations like co- channel interference, cell

sectoring is done. It involves replacing an Omni-directional antenna at the base station

by several directional antennas.

Advantages: It improves S/I ratio (signal-to-interference). It reduces interference which
increases capacity. It enables to reduce the cluster size and provides an additional
freedom in assigning channels. Here we don’t touch the reuse distance and we will not
touch the Cell size. We replace antenna only which is used in cellular Base station.

Limitations: Increased number of antennas at each base station. Since sectoring reduces the
coverage area of a particular group of channels, the number of handoffs increases as well.

Need of Frequency Reuse

The Geographical area is divided as small hexagonal shaped structure known as cell.

Each cell has its own range of frequencies (Spectrum).

By doing so, we can allocate the spectrum for very few cells.

We'll eventually ran out of all the frequencies by allocating to each cell.

Which makes impossible to cover all the areas, hence the concept of frequency reuse is
introduced.

Problem

Consider this Cluster, with 7 cells, here the spectrum is allocated uniquely for each cell.

There are only 7 unique spectrum is available for communication.
Each number represents each range of frequency.

This cluster only covers a small geographical area, but we need to
cover all the area.

Hence we go for frequency reuse.

Solution

People thought that what if we use the same range of frequency, which is already used.

Many people opposed this theory, and said that it will cause dramatic interference
during the communication.

But with specific distance, the above problem can be overcome.

This theory developed and opened the gateway for new research.

This concept is called as Frequency Reuse.

Frequency Reuse

Frequency reuse is a technique of reusing frequencies and channels within a
communication system to improve capacity and spectral efficiency.

Frequency reuse is one of the fundamental concepts on which commercial wireless
systems are based that involve the partitioning of an RF radiating area into cells.

It is also called as frequency planning.

There are four basic types of handoffs in GSM network:

1. Intra-cell handover:

Such a kind of handover is performed to optimize the traffic load in the cell or to improve quality of a

connection by changing carrier frequency.

2 Inter-cell handover:

It is also known as Intra-BSC handover.

Here the mobile moves from one cell to another but remains within the same BSC (Base station

controller).

Here the BSC handles the handover process

3 Inter-BSC handover:

It is also called as Intra-MSC handover.

As BSC can control only a limited number of cells, we might usually need to transfer a mobile from one

BSC to another BSC.

Here the MSC handles the handover process.

4 Inter-MSC handover:

It occurs when a mobile move from one MSC region to another MSC.

MSC cover a large area. It can be imagined as a handover from Maharashtra MSC to Gujarat MSC while

travelling.

GSM - Addresses and Identifiers

GSM treats the users and the equipment in different ways. Phone numbers, subscribers,

and equipment identifiers are some of the known ones. There are many other identifiers

that have been well-defined, which are required for the subscriber’s mobility

management and for addressing the remaining network elements. Vital addresses and

identifiers that are used in GSM are addressed below.

International Mobile Station Equipment Identity (IMEI)

The International Mobile Station Equipment Identity (IMEI) looks more like a serial

number which distinctively identifies a mobile station internationally. This is allocated

by the equipment manufacturer and registered by the network operator, who stores it

in the Equipment Identity Register (EIR). By means of IMEI, one recognizes obsolete,

stolen, or non-functional equipment.

Following are the parts of IMEI:

• Type Approval Code (TAC) : 6 decimal places, centrally assigned.

• Final Assembly Code (FAC) : 6 decimal places, assigned by the manufacturer.

• Serial Number (SNR) : 6 decimal places, assigned by the manufacturer.

• Spare (SP) : 1 decimal place.

Thus, IMEI = TAC + FAC + SNR + SP. It uniquely characterizes a mobile station and

gives clues about the manufacturer and the date of manufacturing.

International Mobile Subscriber Identity (IMSI)

Every registered user has an original International Mobile Subscriber Identity (IMSI)

with a valid IMEI stored in their Subscriber Identity Module (SIM).

IMSI comprises of the following parts:

• Mobile Country Code (MCC) : 3 decimal places, internationally standardized.

• Mobile Network Code (MNC) : 2 decimal places, for unique identification of

mobile network within the country.

• Mobile Subscriber Identification Number (MSIN) : Maximum 10 decimal

places, identification number of the subscriber in the home mobile network.

Mobile Subscriber ISDN Number (MSISDN)

The authentic telephone number of a mobile station is the Mobile Subscriber ISDN

Number (MSISDN). Based on the SIM, a mobile station can have many MSISDNs, as

each subscriber is assigned with a separate MSISDN to their SIM respectively.

Listed below is the structure followed by MSISDN categories, as they are defined based

on international ISDN number plan:

• Country Code (CC): Up to 3 decimal places.

• National Destination Code (NDC): Typically 2-3 decimal places.

• Subscriber Number (SN): Maximum 10 decimal places.

Mobile Station Roaming Number (MSRN)

Mobile Station Roaming Number (MSRN) is an interim location dependent ISDN

number, assigned to a mobile station by a regionally responsible Visitor Location

Register (VLA). Using MSRN, the incoming calls are channelled to the MS.

The MSRN has the same structure as the MSISDN.

• Country Code (CC): of the visited network.

• National Destination Code (NDC): of the visited network.

• Subscriber Number (SN): in the current mobile network.

Location Area Identity (LAI)

Within a PLMN, a Location Area identifies its own authentic Location Area Identity

(LAI). The LAI hierarchy is based on international standard and structured in a unique

format as mentioned below:

• Country Code (CC): 3 decimal places.

• Mobile Network Code (MNC): 2 decimal places.

• Location Area Code (LAC): maximum 5 decimal places or maximum twice 8 bits

coded in hexadecimal (LAC < FFFF).

Temporary Mobile Subscriber Identity (TMSI)

Temporary Mobile Subscriber Identity (TMSI) can be assigned by the VLR, which is

responsible for the current location of a subscriber. The TMSI needs to have only local

significance in the area handled by the VLR. This is stored on the network side only in

the VLR and is not passed to the Home Location Register (HLR).

Together with the current location area, the TMSI identifies a subscriber uniquely. It can

contain up to 4 × 8 bits.

Local Mobile Subscriber Identity (LMSI)

Each mobile station can be assigned with a Local Mobile Subscriber Identity (LMSI),

which is an original key, by the VLR. This key can be used as the auxiliary searching

key for each mobile station within its region. It can also help accelerate the database

access. An LMSI is assigned if the mobile station is registered with the VLR and sent to

the HLR. LMSI comprises of four octets (4x8 bits).

Cell Identifier (CI)

Using a Cell Identifier (CI) (maximum 2 × 8) bits, the individual cells that are within an

LA can be recognized. When the Global Cell Identity (LAI + CI) calls are combined,

then it is uniquely defined.

GSM - Protocol Stack

GSM architecture is a layered model that is designed to allow communications between

two different systems. The lower layers assure the services of the upper-layer protocols.

Each layer passes suitable notifications to ensure the transmitted data has been

formatted, transmitted, and received accurately.

MS Protocols

Based on the interface, the GSM signaling protocol is assembled into three general

layers:

• Layer 1 : The physical layer. It uses the channel structures over the air interface.

• Layer 2 : The data-link layer. Across the Um interface, the data-link layer is a

modified version of the Link access.

• Layer 3 : GSM signaling protocol’s third layer is divided into three sub layers:

o Radio Resource Management (RR),

o Mobility Management (MM), and

o Connection Management (CM).

MS to BTS Protocols

The RR layer is the lower layer that manages a link, both radio and fixed, between the

MS and the MSC. For this formation, the main components involved are the MS, BSS,

and MSC. The responsibility of the RR layer is to manage the RR-session, the time when

a mobile is in a dedicated mode, and the radio channels including the allocation of

dedicated channels.

The MM layer is stacked above the RR layer. It handles the functions that arise from the

mobility of the subscriber, as well as the authentication and security aspects. Location

management is concerned with the procedures that enable the system to know the

current location of a powered-on MS so that incoming call routing can be completed.

The CM layer is the topmost layer of the GSM protocol stack. This layer is responsible

for Call Control, Supplementary Service Management, and Short Message Service

Management. Each of these services are treated as individual layer within the CM layer.

Other functions of the CC sub layer include call establishment, selection of the type of

service (including alternating between services during a call), and call release.

BSC Protocols

The BSC uses a different set of protocols after receiving the data from the BTS. The Abis

interface is used between the BTS and BSC. At this level, the radio resources at the

lower portion of Layer 3 are changed from the RR to the Base Transceiver Station

Management (BTSM). The BTS management layer is a relay function at the BTS to the

BSC.

The RR protocols are responsible for the allocation and reallocation of traffic channels

between the MS and the BTS. These services include controlling the initial access to the

system, paging for MT calls, the handover of calls between cell sites, power control, and

call termination. The BSC still has some radio resource management in place for the

frequency coordination, frequency allocation, and the management of the overall

network layer for the Layer 2 interfaces.

To transit from the BSC to the MSC, the BSS mobile application part or the direct

application part is used, and SS7 protocols is applied by the relay, so that the MTP 1-3

can be used as the prime architecture.

MSC Protocols

At the MSC, starting from the BSC, the information is mapped across the A interface to

the MTP Layers 1 through 3. Here, Base Station System Management Application Part

(BSS MAP) is said to be the equivalent set of radio resources. The relay process is

finished by the layers that are stacked on top of Layer 3 protocols, they are BSS

MAP/DTAP, MM, and CM. This completes the relay process. To find and connect to

the users across the network, MSCs interact using the control-signaling network.

Location registers are included in the MSC databases to assist in the role of determining

how and whether connections are to be made to roaming users.

Each GSM MS user is given a HLR that in turn comprises of the user’s location and

subscribed services. VLR is a separate register that is used to track the location of a user.

When the users move out of the HLR covered area, the VLR is notified by the MS to

find the location of the user. The VLR in turn, with the help of the control network,

signals the HLR of the MS’s new location. With the help of location information

contained in the user’s HLR, the MT calls can be routed to the user.

Model-View-Controller (MVC)

A variety of design patterns are used to develop the WebSphere Commerce framework.

Any solution extending from WebSphere Commerce should adhere to these high-level

design patterns.

Model-View-Controller design pattern

The model-view-controller (MVC) design pattern specifies that an application consist of

a data model, presentation information, and control information. The pattern requires

that each of these be separated into different objects.

Command design pattern

WebSphere Commerce Server accepts requests from browser-based thin-client

applications; from applications such as the Sales Center; and remote applications. For

example, a request may come from a remote procurement system, or from another

commerce server.

Display design pattern

Display pages return a response to a client. Typically, display pages are implemented as

JSP pages.

Model-View-Controller (MVC)

The model-view-controller (MVC) design pattern specifies that an application consist of

a data model, presentation information, and control information. The pattern requires

that each of these be separated into different objects.

MVC is more of an architectural pattern, but not for complete application. MVC mostly

relates to the UI / interaction layer of an application.

MVC Design Pattern

With MVC design pattern, we have following components on which our design

depends:

The model which is transferred from one layer to the other.

The View which is responsible to show the data present in the application.

The controller is responsible to accept a request from a user, modify a model and send it

to the view which is shown to the user.

The model (for example, the data information) contains only the pure application data;

it contains no logic describing how to present the data to a user.

The view (for example, the presentation information) presents the model's data to the

user. The view knows how to access the model's data, but it does not know what this

data means or what the user can do to manipulate it.

Finally, the controller (for example, the control information) exists between the view

and the model. It listens to events triggered by the view (or another external source)

and executes the appropriate reaction to these events. In most cases, the reaction is to

call a method on the model. Since the view and the model are connected through a

notification mechanism, the result of this action is then automatically reflected in the

view.

	Mobile Computing Unit 1 - 2018.pdf
	Mobile Computing Unit 2 & 4 - 2019.pdf
	Microsoft Word - Mobile Computing Unit 3 - 2018.pdf
	Microsoft Word - Mobile Computing Unit 5 - 2018.pdf

